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PACS. 64.60.Ak – Renormalization-group, fractal, and percolation studies of phase transi-
tions.

PACS. 05.40.-a – Fluctuation phenomena, random processes, noise, and Brownian motion.

PACS. 64.60.Fr – Equilibrium properties near critical points, critical exponents.

Abstract. – Classically, percolation critical exponents are linked to power laws that char-
acterize cluster fractal properties. We find here that the gradient percolation power laws are
conserved even for extreme gradient values for which the frontier of the infinite cluster is no
longer fractal. In particular, the exponent 7/4 which was recently shown to be the exact value
for the dimension of the so-called “hull” or external perimeter of the incipient percolation clus-
ter, keeps its value in describing the width and length of gradient percolation frontiers whatever
the gradient value. Its origin is then not to be found in the thermodynamic limit. The compar-
ison between the numerical and the exact results that can be obtained analytically for extreme
values of the gradient suggests that there exists a unique power law from size 2 to infinity that
describes the gradient percolation frontier. These results provides an intrinsic method to find
whether a rough interface belongs to gradient percolation without knowledge of the gradient
and can be considered as resulting from a new conservation law for diffusion on a lattice.

Spreading of objects in space with a gradient of probability is most common. From chemical
composition gradients to the distribution of plants that depends on their solar exposure,
probability gradients exist in many inhomogeneous systems. In fact inhomogeneity is a rule
in nature. However, most of the systems that physicists are studying are homogeneous since
they are thought to be simpler to understand. In particular, phase transitions or critical
phenomena are studied in this framework, the simplest being percolation transition [1].

In this work, the opposite situation, a strongly inhomogeneous system is studied. We
report that percolation fractal exponents are valid even in cases that are far from the large
homogeneous system limit. This is found in the frame of gradient percolation, a situation first
encountered in the study of diffusion fronts [2, 3]. Surprisingly, these exponents, up to now
believed to express properties of large systems, are shown here to be verified in a limit that
could be called the small system limit (SSL), where some of the gradient percolation properties
can be computed analytically. This letter presents the case of the 2D square lattice.
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Fig. 1 – Gradient percolation front. Particles are distributed at random with probability p(x) = 1−
x/Lg, x being the vertical direction. The occupied sites are in black and the last line of connected occu-
pied sites is the gradient percolation front shown in light gray. This situation corresponds also to a dif-
fusion situation where the front is called the diffusion front. Top: L = Lg = 500. Bottom: L = 50 and
Lg = 12. The black window has an horizontal width equal to σf . It contains approximately Lg points.

The gradient percolation (GP) situation is depicted in fig. 1. It shows examples of a
random distribution of points on a 2D square lattice of size Lg × L with a linear gradient
of concentration. Each site (x, y) is occupied with probability p(x) = 1 − x/Lg (x being the
vertical direction in the figure). In gradient percolation there is always an infinite cluster
of occupied sites as there is a region where p is larger than the standard percolation (SP)
threshold pc. There is also an infinite cluster of empty sites as there is a region where p is
smaller than pc. The object of interest is the GP front, the external limit (or frontier) of the
infinite occupied cluster. It is constituted by the sites which belong to the occupied cluster
and are first-nearest neighbours with empty sites belonging to the infinite empty cluster. It is
shown in grey in fig. 1. This front is a random object with an average position xf , a statistical
width σf and a total length Nf . In so far as the GP front and the SP external perimeter
(often called hull) have the same geometry their fractal dimension was first conjectured to be
exactly equal to 7/4 in [2]. This result was then demonstrated heuristically by Saleur and
Duplantier [4] and very recently it was proved mathematically by Smirnov and Werner [5, 6].
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The early GP studies were focussed on finding its relation with standard percolation. Let
us first recall the definitions. For 0 ≤ x ≤ Lg, nf (x) is the mean number, per unit horizontal
length, of points of the front lying on the line x. It measures the front density at distance x.
The length Nf , the position xf and the width σf of the front are then defined in terms of the
nf (x) by

Nf = L

Lg∑

x=0

nf (x), xf =
∑Lg

x=0 xnf (x)∑Lg

x=0 nf (x)
,

and σ2
f =

∑Lg

x=0(x − xf )2nf (x)∑Lg

x=0 nf (x)
.

It was found in [2] that the mean front was situated at a distance where the density
of occupation was very close to pc or p(xf ) � pc. This was verified numerically with such
precision that the gradient percolation method is now often used to compute percolation
thresholds [7–11]. It was also found that:

1) The width σf depends on Lg through a power law σf ∝ (Lg)ν/(1+ν), where ν = 4/3 is
the correlation length exponent [1] so that σf ∝ (Lg)4/7. The width σf was also shown
to be a percolation correlation length. (We consider the case where L is much larger
than the front width).

2) The front was fractal with a dimension Df , numerically determined, close to 1.75. The
front length followed a power law Nf ∝ (Lg)αN with αN = (Df − 1)ν/(1 + ν).

3) Most important, it was numerically observed that the sum of these two exponents was
very close to 1. If true this implies that ν/(1 + ν) + (Df − 1)ν/(1 + ν) = 1 or Df =
1 + 1/ν = 7/4. This is how it was conjectured in [2] that Df = 7/4.

In this sense the GP power laws were thought to be linked to the SP exponent ν and to
the fractality of the percolation cluster hull. The behavior of the front in the thermodynamic
limit has been discussed in [12].

However, if true, and now we know that 7/4 is the exact value [5, 6], there follows an
intriguing relation, namely σ

Df

f is exactly proportional to L1
g. This means that the number of

surface particles within the correlation length is exactly proportional to Lg. This is particularly
striking for diffusion fronts. Diffusion of particles from a source results in a concentration
gradient and an associated GP situation. In that frame, the above result means that, if Lg

particles have diffused on a vertical row, there is on average the same, or a constant fraction
of, number of particles on the correlated surface. This surface content of a box with a lateral
size equal to the statistical width is illustrated in fig. 1 (bottom). In itself, this fact seems a
priori to have nothing to do with fractals, percolation or the thermodynamic limit. From this
point of view it is possibly the expression of a conservation law. But if such a conservation
exists, it should apply also for extreme gradients corresponding to Lg of a few units. In
particular, it should apply to the very extreme Lg = 1, 2 and 3 for which exact values of xf ,
Nf and σf can be calculated analytically.

For Lg = 1, trivially xf = 0, σf = 0, and Nf/L = 1. For Lg = 2 or Lg = 3, given a site on
a line x, one can describe all the configurations such that the point belongs to the front, and
compute their probability. For example, for Lg = 2 all the occupied sites on the line x = 1
belong to the front, and a site on the line x = 0 will belong to the front if at least one of
its three neighbours on the line x = 1 is empty. Thus we get in this case, nf (1) = 1/2 and
nf (0) = 1− (1/2)3 = 7/8. With the same kind of arguments, we can make the computations
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for Lg = 3 but the geometry of connected sets is more complex as there are more configurations
to consider. This is not trivial but can be done exactly [13]. One obtains:

– for Lg = 1: Nf/L = 1, xf = 0 and σf = 0;

– for Lg = 2:

Nf/L =
11
8

, xf =
4
11

and σf =
2
√
7

11
;

– for Lg = 3:

Nf/L =
9401
5832

, xf =
6966
9401

and σf =
9
√
576049
9401

.

As will be shown, the numerical results described below verify the GP power laws with
such precision that the question arises of the existence of a simple mathematical law extending
from Lg = 1 to infinity. (The fact that these power laws are valid for large systems has been
proven through extensive numerical simulations [7, 12, 13]). To answer this question in the
small system limit, we proceed in 2 steps.

First we test these laws numerically for Lg between 4 and 50 by searching the best numerical
power laws followed by the width. Considering arbitrary test exponents values α between 1.6
and 1.9, we study σα

f as a function of Lg between 4 to 50. For each α value, there is a best
line σα

f = aα(Lg + bα) fitting the numerical σα
f . The possible contribution of a small bα,

invisible for large systems, is necessary here. In particular, one should remark that for Lg = 1
the width is strictly 0 so that some negative value of bα should be present. In the next step,
the mean error d(α), defined by d(α)2 = (1/47)

∑50
Lg=4(σf (Lg)α − aα(Lg + bα))2, is measured

numerically as a function of α. The results are shown in fig. 2. One finds a clear minimum
for α = 1.75, showing that this value gives the best power law fit. Once the best fit with
the empirical data is made (see fig. 3), one has the best values for the parameters a and b:
a = 0.297 and b = −1.09. Note that b should be strictly equal to −1 in order to obtain a null
width for the trivial case Lg = 1.

Another verification of the extreme GP power laws can be obtained from the study of the
front length or of the quantity (Nf/L)7/3 as a function of Lg. In fig. 3, the diamonds represent
the values of (Nf/L)7/3 and the best linear fit has equation Y = c(Lg +d) with c = 0.845 and
d = 0.88. This shows indeed that the exponents 4/7 and 3/7 can be used down to the steepest
gradients for which the frontier is no longer fractal. Note that the horizontal scale is linear.

Once the values of a and b are obtained numerically, one can extrapolate down to Lg = 1, 2
and 3. The results, denoted by σf (4–50), are given in table I. One observes that the numerical
extrapolations correspond to the exact values with a good, but not perfect, precision. Note
that we do not specify a confidence interval at this stage since the fit occurs through a power
law. It is then difficult to give a confidence interval for the coefficients a and b obtained from
a least-square linear regression on the values of σ

7/4
f .

In order to obtain a better control on the numerical precision of a and b we made extensive
computations of the two cases Lg = 4 and Lg = 5 with 100 trials on a length L = 5·105. Doing
so, one obtains the mean values and their standard deviation: σf (Lg = 4)7/4 = 0.8658±0.0009
and for σf (Lg = 5)7/4 = 1.1610±0.0013. Thus if we compute the equation of the line a(Lg+b)
which interpolates the two points (4, σf (4)7/4) and (5, σf (5)7/4), we obtain a = 0.2952±0.0022
and b = −1.066±0.041. This last result shows that the value −1 enters the confidence interval
of the numerical b. Given the numerical values for Lg = 4 and 5, we can also get extrapolated
values of σf for Lg = 1, 2 and 3 (denoted by σf (4–5)), together with their confidence interval
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Fig. 2 – Determination of the best exponent value for the square lattice: α = 1.75. The same result
has been obtained for the triangular lattice [5].
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Fig. 3 – Numerical results for the square lattice (data averaged over 50 trials on a length L = 105).

The circles, respectively diamonds, represent, respectively σ
7/4
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Table I – Comparison between exact and extrapolated results. The data (4–50), respectively (4–5)
correspond to extrapolated values from the respective ranges (4–50), respectively (4–5) (see text). δ is
the confidence interval.

Lg = 1 Lg = 2 Lg = 3

exact σf 0 0.4810457 . . . 0.7266046 . . .
σf (4–50) −0.13 0.47 0.72
σf (4–5) 0.106 0.478 0.726
δσf (4–5) 0.023 0.005 0.002

exact Nf/L 1 1.3750000 . . . 1.6119684 . . .
Nf/L (4–50) 1.24 1.48 1.68
Nf/L (4–5) 1.109 1.393 1.615

δ(Nf/L) (4–5) 0.017 0.009 0.004

(denoted by δσf (4–5)). The result (see table I) is that the extrapolated values are very close to
the exact ones for Lg = 2 and 3. For (Nf/L)7/3, in the same way we obtain a linear interpolate
of the values for Lg = 4 and 5, with coefficients c = 0, 893 ± 0.014 and d = 0.427 ± 0.074.
At this point one could conclude that the numerical results are compatible with the existence
of a single mathematical law for the width dependence, this law working from Lg = 2 to
infinity but not for Lg = 1. (The quality of the random number generator has been checked
by comparing numerical values of σf and Nf for Lg = 2 and 3, with the exact ones).

But the question of a unique mathematical power law can also be studied from the point
of view of the exact results only. As we have exact values, one can compute the equation of
the line y = a(Lg + b) defined by the two points (2, σf (2)7/4) and (3, σf (3)7/4). One obtains
a = 0.2939764 . . . and b = −1.0548219 . . . . This b value also excludes that the power law
can be used down to Lg = 1. But otherwise, these values enter the confidence interval of the
numerics obtained from Lg = 4 and 5: a = 0.2952 ± 0.0022 and b = −1.066 ± 0.041. Thus
both numerical and exact results, are compatible with the existence of a unique power law of
the form σ

7/4
f (Lg) = a(Lg + b) working from Lg = 2 to infinity.

A few comments can be formulated about the fact that the computed value (supposedly
exact if deduced from the Lg = 2 and Lg = 3 exact values), and the numerical value for b
are close, but not equal to −1 (which should be required for the law to fit the case Lg = 1).
The first remark is that the case Lg = 2 is “abnormal” as in this case there is no Grossman-
Aharony effect [14]: the accessible perimeter of the front and the front itself are identical.
This is not the case for larger Lg values from 3 and above. Secondly the small discrepancy
could be related to the fact that the frontier definition considers only the occupied sites. It
gives to these sites a privileged role whereas one should also consider the frontier of the empty
cluster. In fact this is not new in GP studies [7, 9] where it was shown that the barycenter
between the frontier of the occupied cluster and the frontier of the empty cluster was a more
natural object. It notably permitted better computations of the percolation threshold. We
have then studied the statistical width of the local barycenter (which can also be computed
exactly) for Lg = 2 or 3. The results show the same behavior as described above, i.e. a b
value close, but not equal to −1.

The above results have a direct consequence. Given an irregular non-fractal interface, for
instance the grey line shown in fig. 1, one can determine if it belongs to gradient percolation
by measuring its statistical width σf and the average value of Nf/L. Through the results
described above one can find Lg from the measured σf . One can then check if Nf/L satisfies
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the GP power laws. This gives an intrinsic way to check if a given interface is of the gradient
percolation type without knowledge of the gradient. This is important as there exist cases
where irregular fronts like corrosion or erosion fronts belong to GP even though the gradient
which built the interface is no more present and only the interface remains [12,15,16].

In summary, it has been shown that the classical power laws of gradient percolation can be
extended to extreme gradients situations with the same fractal exponents although the systems
present no fractal geometry. Five conclusions can be drawn from these results. First, we recall
that extreme gradient situations can be found in diffused contacts between materials. The
fact that the contact geometry can be described by the same exponents whatever the value of
the diffusion length will certainly help to understand the properties of these contacts. Second,
there is an intrinsic method to find whether a given rough interface belongs to gradient perco-
lation without knowledge of the gradient. Thirdly, our results imply that there exists a (new)
conservation law in diffusion. This law stipulates that the length over the correlation length
window of the diffusion front is strictly proportional to the gradient or diffusion length. Four,
the fact that the same exponents have been found for the square and the triangular lattice even
for extreme gradients, in other words for small systems, suggests that universality is not related
here to the neglect of the microscopic details of the interactions [13]. Here there is no coarse
scale and still universality is verified. Finally, the fact that the exponents 4/7 and 3/7 are
valid down to the smallest Lg values (or the steepest gradients) suggests that these exponents
play the same type of role here as the exponent 1/2 intervening in the fluctuations of the sum
of independent identically distributed random variables. In this last case the exponents apply
to any number of random variables starting from 2 or 3 up to infinity. The exponents 4/7 and
3/7 may here display a combinatory origin which is out of reach in the thermodynamic limit.
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