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Stochastic Image Models from SIFT-Like Descriptors\ast 

A. Desolneux\dagger and A. Leclaire\dagger 

Abstract. Extraction of local features constitutes a first step of many algorithms used in computer vision.
The choice of keypoints and local features is often driven by the optimization of a performance
criterion on a given computer vision task, which sometimes makes the extracted content difficult
to apprehend. In this paper we propose to examine the content of local image descriptors from
a reconstruction perspective. For that, relying on the keypoints and descriptors provided by the
scale-invariant feature transform (SIFT), we propose two stochastic models for exploring the set
of images that can be obtained from given SIFT descriptors. The two models are both defined as
solutions of generalized Poisson problems that combine gradient information at different scales. The
first model consists in sampling an orientation field according to a maximum entropy distribution
constrained by local histograms of gradient orientations (at scale 0). The second model consists in
simple resampling of the local histogram of gradient orientations at multiple scales. We show that
both of these models admit convolutive expressions which allow us to compute the model statistics
(e.g., the mean, the variance). Also, in the experimental section, we show that these models are able
to recover many image structures, while not requiring any external database. Finally, we compare
several other choices of points of interest in terms of quality of reconstruction, which confirms the
optimality of the SIFT keypoints over simpler alternatives.
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mum entropy distributions, exponential models
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1. Introduction. A fundamental problem of vision consists in extracting a minimal rep-
resentation that is sufficient for a human to apprehend the semantic content of an image.
Marr and Hildreth [39, 38] proposed a raw primal sketch image representation based on
the zero-crossings of the Laplacian computed at different scales, which extract spatial po-
sitions corresponding to edges, blobs, and terminations. Since this pioneering work, many
authors proposed extracting different points of interest (keypoints) or local descriptors (fea-
tures) based on several differential operators, while being invariant to given image transfor-
mations. Extracting keypoints and local features in images is indeed a fundamental step for
many imaging tasks [21], like image recognition [63, 32, 9, 10, 57], image matching and rec-
tification [32, 60, 31], object detection and tracking [8, 58, 66, 52], video stabilization [6, 65],
and image classification [28, 68, 27]. In this paper, we propose to discuss the role of such
keypoints and descriptors from a reconstruction point of view.

In the seminal paper [5], Attneave suggests that the most important points for image
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perception are the ones of maximum curvature. Since then, many techniques have emerged
to single out keypoints and build local descriptors around them. Depending on the applica-
tive context, one should use descriptors that are invariant with respect to specific geometric
transformations1 (e.g., image recognition generally needs invariance to homography and illu-
mination change). Here we will only mention a few famous local descriptors, and we refer the
reader to [42, 59, 44, 31] for a more comprehensive survey.

Harris and Stephens proposed a combined corner and edge detector based on the deter-
minant and trace of the structure tensor of the image [23]. A multiscale variant based on a
normalized Laplacian of Gaussian (LoG) scale-space, coined Harris--Laplace, was proposed by
Milokajczyk and Schmid [41]. The same authors also proposed in [41] the Harris-affine point
detector, which extends the previous one with a normalization step in order to get invariance
to affine transformations. Tuytelaars and Mikolajczyk proposed in [59] two region detectors,
both starting from anchor points (e.g., Harris points); then the first one selects a region within
detected edges around the anchor, and the second one extracts a region by analyzing intensity
profiles on rays emanating from the anchor. Rosten and Drummond introduced in [54] the
``features from accelerated segment test"" (FAST), which is a corner detector accelerated by a
machine learning technique. This approach was made faster by Mair et al. [36] using optimal
decision trees, thus obtaining an ``adaptive and generic accelerated segment test"" (AGAST).
Mus\'e et al. [47] proposed extracting shapes from the image level lines, and processing them
in order to get an affine invariant representation.

In parallel to this research on keypoints, many techniques have been proposed for invariant
local descriptions of images. An early descriptor is given by the local binary patterns (LBPs)
defined by Ojala, Pietik\"ainen, and M\"aenp\"a\"a [50], which extract signs of differences of image
values on pixels located on a circular neighborhood of a keypoint. The LBPs were originally
designed for texture description but can also be used for face detection [1]. In [32], Lowe
introduced the scale-invariant feature transform (SIFT), which first extracts the keypoints
as local extrema of the ``difference of Gaussian"" (DoG) approximation of the LoG, and next
computes around each keypoint a local descriptor based on normalized histograms of gradient
direction (HOG); see the details in section 2. Notice that similar HOG descriptors computed
on a dense grid were actually used in [14] for person detection; one reference implementation
of the HOG descriptors is given in [22]. A fully affine-invariant extension of SIFT, named
ASIFT, was proposed by Morel and Yu [44] and consists in applying the SIFT method with
the image transformed with several simulated affine maps. The SURF method (speeded-up ro-
bust features) proposed by Bay et al. [7] is closely related in construction to the SIFT method,
but allows for a faster implementation. At a higher semantic level, local image behavior can
also be represented by visual words [58, 11] which are obtained as cluster points in a feature
space. Later, some authors proposed describing a patch using local binary descriptors (LBDs),
which extract the signs of differences between Gaussian measurements taken at different lo-
cations. Using different ways of selecting these locations leads to the methods BRISK [29]
(binary robust invariant scalable keypoints) or FREAK [2] (fast retina keypoint). All of these
descriptors have quite different invariance properties (evaluated in either a theoretical or an
experimental framework).

1The translation invariance is generally always required, and often trivial.
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Long before the design of these image descriptors, the question of a minimal representation
of an image was thoroughly studied, mainly for compression purposes. Through the concept
of a raw primal sketch, Marr [38] suggested that the human visual system processes images
by retaining essentially the lines of zero-crossing of the Laplacian at several scales. This led
to the conjecture that an image is uniquely defined by these zero-crossing lines, a conjecture
that was later made precise by Mallat and Zhong [37] using wavelet modulus maxima. Both
of these conjectures were proved wrong by Meyer [40], but still algorithms for approximate
reconstruction were proposed by Hummel and Moniot [24] for zero-crossings and by Mallat
and Zhong [37] for the case of wavelet modulus maxima. In addition, unique characterization
can be shown to be true under some additional hypotheses [12, 13, 55, 4, 3].

From a more practical point of view, several authors have raised the question of inversion
of a feature-based representation. For example, Elder and Zucker [20] proposed an algorithm
for image reconstruction from detected contours based on the heat diffusion. Nielsen and
Lillholm [49] considered the problem of variational reconstruction from linear measurements;
in addition to the minimum variance reconstruction (given by the pseudoinverse of the mea-
surements matrix), they proposed two variational reconstructions based on either the entropy
(of the image seen as a probability distribution on its domain) or the H1 norm. Interestingly,
they discussed the problem of extracting a subset of linear measurements leading to the best
reconstruction and empirically compared three different strategies for that purpose.

Motivated by privacy issues (since the descriptors may be transmitted on an unsecured
network), Weinzaepfel, J\'egou, and P\'erez [64] addressed image reconstruction from the output
of a SIFT transform adapted with elliptic keypoints. One important difference with previous
works is that this method exploits a database of image patches: for each keypoint, a patch
with a similar description is sought in the database, and all the patches are stitched together
with Poisson image editing [51]. Vondrick et al. [62] addressed reconstruction from dense
HOGs by relying on a paired dictionary representation of HOGs and patches. Also, d'Angelo
et al. [15] addressed reconstruction from local binary descriptors by relying on primal-dual
optimization techniques; in contrast with [64, 62], this method does not need any external
information. Kato and Harada [26] formulated reconstruction from a bag of visual words as
a problem of quadratic assignment. Finally, Juefei-Xu and Savvides [25] proposed inverting
the LBP representation with an approach based on paired dictionary learning with an \ell 0

constraint.
More recently, the success of deep convolutional neural networks in image classifica-

tion [27, 67] has urged the need for inverting the corresponding representations in order to
intuitively understand the kind of information that is extracted at each layer. Even if they do
not formulate it as an inverting procedure, Zeiler and Fergus [67] proposed building a deconvo-
lution network that allows one to visualize in image space the stimuli that excite one response
at a particular layer of the neural network. Given an image u, Mahendran and Vedaldi [34, 35]
proposed searching for a preimage of an image representation \varphi (u) by minimizing a functional
containing a loss term related to the representation \varphi and a regularizing term (in particular
the H1 norm). Even if the regularizer is convex, the transformation \varphi is in general highly
nonlinear, so that the resulting optimization problem is not convex; thus the output of the
inversion may depend on the parameters and initializations of the chosen optimization proce-
dure. On the other hand, Dosovitskiy and Brox [19] suggested learning an approximate left
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inverse of the representation (i.e., a mapping \varphi  - 1
L such that \varphi  - 1

L (\varphi (u)) \approx u for every u) in the
form of an up-convolutional network. These methods are generic in the sense that they can
be applied to any image representation that can be approximated by the output of a convo-
lutional neural network; in particular, the authors of [19] display inversion results for HOG,
SIFT, and AlexNet [27] representations. Notice that the inversion/visualization techniques
of [67, 19] exploit an external database, while that of [34, 35] does not.

Instead of building a uniquely defined inversion technique (using regularization), another
way to perform reconstruction from the image representation \varphi is to sample from a stochastic
model that explores the set of preimages of \varphi (u). This is particularly relevant if one uses
an image representation that is not invertible: for example, the SIFT cells of an image may
not cover its whole domain, and thus many images could have the same SIFT descriptors.
Besides, the HOG descriptors are inherently of a statistical nature: each HOG extracts the
distribution of gradient orientations in one small area. Thus they only provide a locally
pooled information and thus do not precisely constrain each gradient value. For this reason,
the inversion by direct (regularized) optimization proposed in [34, 35] is not adapted to the
usual SIFT representation (sometimes called sparse SIFT, as opposed to SIFT descriptors
computed on a dense grid).

One way to address this problem is to sample from a maximum entropy model that
complies with these statistical constraints. Such maximal entropy models were considered by
Zhu, Wu, and Mumford in [69, 46] for texture modeling based on responses to an automatically
selected subset of filters chosen from a filter bank. This approach has been recently extended
by Lu, Zhu, and Wu to responses to a pretrained neural network [33]. Maximum entropy
models were also used to question the noise models used in the a contrario framework for
feature detections in images [18]: in [16], for two types of given detections (cluster of points,
or line segments), Desolneux proposed explicit computations of maximal entropy image models
that led to the same detections (in average). Let us emphasize that one important difference
with previous works is that, more than reconstructing the original image, we aim at exploring
the set of images with similar HOG description at the keypoints positions, with the least
possible a priori information on what the reconstruction should look like. In contrast, the
dependence on an external database in [51, 19] poses a strong prior on the reconstruction.

In the present paper, we propose two stochastic models that comply with statistical fea-
tures given by a SIFT-like representation. In order to derive explicit computations, we work
on a simplified SIFT transform which extracts multiscale HOGs from regions around the
(usual) SIFT keypoints. The first model, called MaxEnt, is indeed an instance of a maximum
entropy model which complies with local statistical constraints on the gradient orientations
(at scale 0, i.e., the image scale). Once the parameters of this model are estimated (using
a gradient descent), a target gradient orientation can be sampled, and we recover an image
by solving a classical Poisson problem. The second model, called MS-Poisson, consists in
first independent sampling of multiscale gradient orientations in all the SIFT cells, and next
merging all the pieces by solving a global multiscale Poisson problem. Even if this model does
not solve an explicit maximum entropy problem, it allows one to coherently merge informa-
tion given at several scales. Several experiments show that both models are able to recover
large image structures and compare well to the results of [64] while not using any external
information. Finally, we discuss the definition of the SIFT keypoints in terms of optimality of
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reconstruction, thus raising the following question related to visual information theory: ``Can
we measure the optimality (at a fixed memory budget) of some image descriptor in terms of
reconstruction?""

The paper is organized as follows. In section 2, we briefly recall the main steps of the
SIFT method and explain the simplified SIFT descriptors that we use for reconstruction. In
section 3, we build and study the maximum entropy model (MaxEnt) used for reconstruction
from monoscale HOGs computed in the SIFT subcells. In section 4, we propose the mul-
tiscale Poisson model (MS-Poisson) that allows us to comply with multiscale HOGs taken
in the SIFT subcells; the corresponding H1-regularized multiscale Poisson problem is explic-
itly solved. In section 5 we display several reconstruction results obtained with both models
(applied with simplified SIFT, or also the true SIFT) and study the variability of the recon-
struction (in terms of first and second order moments, but also of SIFT keypoints computed
on the reconstruction). We also compare our results with other existing reconstruction tech-
niques and apply the reconstruction models on other keypoint sets, thus confirming (from the
synthesis perspective) the efficiency of the SIFT method for global image description. Finally,
in section 6 we conclude the discussion proposed in this paper and offer some possibilities
for future research. A preliminary version of this work was published as a conference paper
in [17]. Compared to the conference version, here we explain in more detail the derivation
of MaxEnt and MS-Poisson models, providing some more properties of these models and in
particular explicit formulae for the first and second order moments of these models. We also
propose several new experiments which illustrate the performance and the variability of these
models (with qualitative and quantitative evaluation) and question the role of the keypoint
definition in the quality of reconstruction. Also, the supplementary material (M116592 01.zip
[local/web 116MB]) attached to this paper contain source codes which allow the reader to
reproduce the experiments shown in the paper.

2. A brief summary of the SIFT method. In this section we briefly recall the construction
of keypoints and local descriptors used in the SIFT method, and we explain the simplified
descriptors that will be used later for the reconstruction in the next sections.

2.1. Gaussian scale-space and keypoints. Following [30], we introduce the Gaussian
scale-space in a continuous domain. Let u : \BbbR 2 \rightarrow \BbbR be an integrable function. For \sigma > 0, we
introduce the function g\sigma : \BbbR 2 \rightarrow \BbbR defined by

g\sigma (\bfitx ) =
1

2\pi \sigma 2
exp

\biggl( 
 - | \bfitx | 

2

2\sigma 2

\biggr) 
.

The Gaussian scale-space associated with u is then defined by the convolution

\forall \bfitx \in \BbbR 2, \forall \sigma > 0, Lu(\bfitx , \sigma ) = g\sigma \ast u(\bfitx ) =
\int 
\BbbR 2

g\sigma (\bfity )u(\bfitx  - \bfity )d\bfity .

Another way to parameterize the scale-space is to use a time parameter t = \sigma 2 and the
kernel kt = g\surd t, which satisfies

\partial 

\partial t
(kt(\bfitx )) =

1

2
\Delta kt(\bfitx ).

M116592_01.zip
http://epubs.siam.org/doi/suppl/10.1137/18M116592X/suppl_file/M116592_01.zip
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In other words, (\bfitx , t) \mapsto \rightarrow Lu(\bfitx ,
\surd 
t) is the solution of the heat equation on \BbbR 2 with initial

condition u (in particular, it is a \scrC \infty function on \BbbR 2 \times (0,\infty )).
Then we consider the scale-normalized Laplacian of Gaussian (LoG) \sigma 2\Delta g\sigma . The PDE

satisfied by kt gives, after a change of variables, that

\sigma 
\partial g\sigma 
\partial \sigma 

(\bfitx ) = \sigma 2\Delta g\sigma (\bfitx ) =

\biggl( 
| \bfitx | 2  - 2\sigma 2

2\pi \sigma 4

\biggr) 
exp

\biggl( 
 - | \bfitx | 

2

2\sigma 2

\biggr) 
.

The detection of keypoints will be based on the local extrema of the function

Du(\bfitx , \sigma ) := \sigma 2\Delta g\sigma \ast u(\bfitx ) = \sigma 2\Delta (g\sigma \ast u)(\bfitx ).

The following proposition, which is recalled without proof, shows that these keypoints are
covariant to several image transformations.

Proposition 1 (see [30]). We have the following invariance properties.
1. \forall a \in \BbbR , Dau = aDu.
2. If v is an affine function of \bfitx , then Du+v = Du.
3. If \bfith \in \BbbR 2 and \tau \bfith u(\bfitx ) = u(\bfitx  - \bfith ) is a translated version of u, then

D\tau \bfith u(\bfitx , \sigma ) = Du(\bfitx  - \bfith , \sigma ).

4. (Scale invariance.) If u(\bfitx ) = v(s\bfitx ) with s > 0, for all \bfitx \in \BbbR 2, then

Du(\bfitx , \sigma ) = Dv(s\bfitx , s\sigma ).

The existence of a keypoint (\bfitx , \sigma ) indicates the presence of a blob-like structure at position
\bfitx with scale \sigma . For example, the Gaussian function gs (s > 0) admits a keypoint (0, s) which
corresponds to a strict local minimum of Dgs .

The authors of [45] also discussed the effect of several other image transformations on the
SIFT keypoints but left aside the factor \sigma 2 in the definition of Du.

2.2. SIFT summary. In the paper by Lowe [32], the scale-normalized LoG is approximated
by a finite difference of Gaussian (DoG) functions: for a constant scale factor k > 1, he
considers instead

(1) (\bfitx , \sigma ) \mapsto \rightarrow (gk\sigma  - g\sigma ) \ast u(\bfitx ) \approx (k\sigma  - \sigma )\partial g\sigma 
\partial \sigma 
\ast u(\bfitx ) = (k  - 1)\sigma 2\Delta g\sigma \ast u(\bfitx ).

Also, the practical implementation of [32] only works with discretized images, so that the
extracted keypoints are actually strict local extrema computed on a discretized scale-space.

Here is a quick summary of the original SIFT method [32]. For technical details we refer
the reader to [53]. Here, and in the remainder of the paper, u0 refers to the original image on
which we compute keypoints and local descriptors.

1. Computing SIFT keypoints:
(a) Extract local extrema of a discrete version of (1).
(b) Refine the positions of the local extrema in position and scale using a quadratic

approximation.
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(c) Discard extrema with low contrast (thresholding low values of (1)) and extrema
located on edges (thresholding high values of the ratio between Hessian eigenvalues).

2. Computing SIFT local descriptors associated with the keypoint (\bfitx , \sigma ):
(a) Compute one or several principal orientations \alpha . For that, in a square of size 9\sigma \times 9\sigma 

centered at \bfitx (and parallel to the image axes), compute a smoothed histogram of
orientations of \nabla g\sigma \ast u0 and extract its significant local maxima.

(b) For each detected orientation \alpha , consider a grid of 4 \times 4 square regions around
(\bfitx , \sigma ). These square regions, which we call SIFT subcells, are of size 3\sigma \times 3\sigma with
one side parallel to \alpha . In each subcell compute the histogram of Angle(\nabla g\sigma \ast u0) - \alpha 
quantized on 8 values (\ell \pi 4 , 1 \leq \ell \leq 8).

(c) Normalization: the 16 histograms are concatenated to obtain a feature vector f \in 
\BbbR 128, which is thresholded and normalized,

(2) fk \leftarrow min(fk, 0.2\| f\| 2) , fk = min

\biggl( 
255,

\biggl\lfloor 
512

f

\| f\| 2

\biggr\rfloor \biggr) 
,

and finally quantized to 8-bit integers.
When computing orientation histograms in steps 2(a) and 2(b), each pixel votes with a

weight that depends on the value of the gradient norm at scale \sigma and on its distance to the
keypoint center \bfitx . Also in step 2(b), there is a linear splitting of the vote of an angle between
the two adjacent quantized angle values.

2.3. Keypoints and descriptors used in our method. In the reconstruction models pro-
posed in this paper, we work with images defined on a rectangle \Omega \subset \BbbZ 2 and consider the
oriented keypoints extracted by the original SIFT method. However, we will only work with
simplified SIFT descriptors in the sense that we extract hard-binned histograms of gradient
orientations at several scales. In other words, we do not include the vote weights or the
normalization step 2(c).

We thus denote by (sj)j\in \scrJ the collection of SIFT subcells, sj \subset \Omega (if a 3\sigma \times 3\sigma subcell is
not entirely contained in \Omega , then we replace it with its intersection with \Omega ). The SIFT subcells
must not be confused with the SIFT cells: in a SIFT cell, there are 16 SIFT subcells, so that
different subcells sj can correspond to the same keypoint. We will denote by (\bfitx j , \sigma j , \alpha j) the
oriented keypoint associated with sj . For \bfity \in \Omega , we denote by \scrJ (\bfity ) = \{ j \in \scrJ | \bfity \in sj\} the
set of indices of SIFT subcells containing \bfity . See Figure 1 for an illustration.

For technical reasons, the statistics that are used in the two proposed models are slightly
different: the MaxEnt model of section 3 works on orientations at scale 0, whereas the MS-
Poisson model of section 4 works on orientations computed at multiple scales. For that reason,
we postpone to the next two sections the definition of the extracted statistics.

3. Stochastic models for gradient orientations. In this section, we propose a model for
generating random images constrained to have prescribed local HOGs in the SIFT subcells.
When designing such a model, the main difficulty arises from the fact that several SIFT sub-
cells can overlap, and thus one has to combine the information available in all corresponding
local HOGs in a way that finally complies with all the statistical constraints. In order to cope
with this issue, we exploit the framework of exponential distributions to design stochastic ori-
entation models with prescribed statistical features. The obtained distribution is ``as uniform
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Figure 1. Examples of SIFT keypoints and subcells. On the left, one can see an original image (courtesy
of J. Delon) with superimposed SIFT oriented keypoints (\bfitx , \sigma , \alpha ) represented by arrows originating from \bfitx ,
with orientation \alpha and length 6\sigma . On the right, we display the 16 SIFT subcells associated with one particular
keypoint. Each subcell is of size 3\sigma \times 3\sigma .

(random) as possible"" in the sense that it is of maximal entropy among all absolutely contin-
uous distributions which satisfy the desired constraints. We combine this random orientation
field with a deterministic magnitude (which is computed with the scales of locally available
keypoints) in order to obtain a random objective vector field for the gradient. Finally we solve
a Poisson reconstruction problem in order to get back a random image whose gradient is as
close as possible as the randomly sampled objective vector field.

3.1. Exponential models with local HOG. Recall that \Omega \subset \BbbZ 2 is a discrete rectangle.
We will denote by \BbbT = \BbbR /2\pi \BbbZ the set of angles, and by \BbbT \Omega the set of all possible orientation
fields \theta = (\theta (\bfitx ))\bfitx \in \Omega on \Omega .

Extracted statistics. For simplicity, in contrast with the usual SIFT method, in this
section we only extract gradient orientations at scale 0 and in addition adopt the same quan-
tization bins for all SIFT subcells,

(3) B\ell =
\bigl[ 
(\ell  - 1)\pi 4 , \ell 

\pi 
4

\bigr) 
(1 \leqslant \ell \leqslant 8)

(i.e., we do not adapt quantization to the principal orientation of the keypoint).
For all j \in \scrJ and 1 \leqslant \ell \leqslant 8, we thus consider the real-valued function defined on

orientation fields by

(4) \forall \theta \in \BbbT \Omega , fj,\ell (\theta ) =
1

| sj | 
\sum 
\bfitx \in sj

1B\ell 
(\theta (\bfitx )).

Thus fj,\ell (\theta ) is the proportion of points \bfitx \in sj having their orientation \theta (\bfitx ) in B\ell .
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Figure 2. Extracting HOG in SIFT subcells. On the left, we display an original image (courtesy of
J. Delon) with three superimposed SIFT subcells sj, and on the right, we display the corresponding HOG
(fj,\ell (\theta 0))1\leqslant \ell \leqslant 8 extracted in these subcells. The MaxEnt model is a probability distribution on orientation fields
that will preserve on average the local HOG extracted in the SIFT subcells.

Maximum entropy distribution. We are then interested in probability distributions P on
\BbbT \Omega such that

(5) \forall j \in \scrJ ,\forall \ell \in \{ 1, . . . , 8\} , \BbbE P

\bigl( 
fj,\ell (\Theta )

\bigr) 
=

1

| sj | 
\sum 
\bfitx \in sj

\BbbP (\theta (\bfitx ) \in B\ell ) = fj,\ell (\theta 0) ,

where \theta 0 = Angle(\nabla u0) is the orientation field of the original image u0, and where \Theta is
a random orientation field with probability distribution P . In other words, we look for a
random model on orientation fields which preserves on average the extracted statistics in the
SIFT subcells; see Figure 2.

Let us emphasize here that we only aim at average preservation of the extracted statis-
tics (fj,\ell ) because of the statistical nature of the SIFT descriptors. As will be clarified with
the expression of the MaxEnt model (in particular in the case of nonoverlapping SIFT sub-
cells), this average preservation guarantee is sufficient to precisely set the gradient orientation
distribution at each point.

There are many probability distributions P on \BbbT \Omega that satisfy (5), and we will be mainly
interested in those that are at the same time as ``random"" as possible, in the sense that they
are of maximal entropy. The following theorem shows the existence of such maximal entropy
distributions.

Theorem 2. There exists a family of numbers \lambda = (\lambda j,\ell )j\in \scrJ ,1\leqslant \ell \leqslant 8 such that the probability
distribution

(6) dP\lambda =
1

Z\lambda 
exp

\Biggl( 
 - 
\sum 
j,\ell 

\lambda j,\ell fj,\ell (\theta )

\Biggr) 
d\theta ,

where the partition function Z\lambda is given by Z\lambda =
\int 
\BbbT \Omega exp

\bigl( 
 - 
\sum 

j,\ell \lambda j,\ell fj,\ell (\theta )
\bigr) 
d\theta , satisfies
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the constraints (5) and is of maximal entropy among all absolutely continuous probability
distributions with respect to the Lebesgue measure d\theta on \BbbT \Omega satisfying the constraints (5).

Proof. This result directly follows from the general theorem given in [46]. The only diffi-
culty is in handling the hypothesis of linear independence of the fj,\ell . In our framework, the
fj,\ell are not independent (in particular because

\sum 8
\ell =1 fj,\ell = 1, and also because there may

be other dependencies---for instance, when one subcell is exactly the union of two smaller
subcells). But one can still apply the theorem to an extracted linearly independent subfam-
ily. This gives the existence of the solution for the initial family (fj,\ell ) (but of course not the
unicity).

Remark. We do not repeat here the argument (based on Lagrange multipliers) showing
that maximizing entropy under constraints (5) leads to exponential distributions. However,
once a solution P\lambda has been computed, and if P is an absolutely continuous probability
distribution satisfying (5), one can write the Kullback--Leibler divergence using the entropy
H(P ):

(7) D(P | | P\lambda ) =

\int 
log
\Bigl( P (\theta )
P\lambda (\theta )

\Bigr) 
P (\theta )d\theta =  - H(P ) + logZ\lambda +

\sum 
\lambda j,\ell fj,\ell (\theta 0),

which shows that maximizing H(P ) under (5) is equivalent to minimize D(P | | P\lambda ). In particu-
lar, this shows that the maximal entropy distribution under (5) is unique (because of the strict
concavity of the entropy) even if there may be several sets of parameters \lambda corresponding to
that solution.

Independence property of the MaxEnt model.

Proposition 3. Under P\lambda the values \Theta (\bfitx ) are independent. In addition, the probability
density function of \Theta (\bfitx ) is given by

1

Z\lambda ,\bfitx 
e - \varphi \lambda ,\bfitx =

1

Z\lambda ,\bfitx 

8\sum 
\ell =1

exp

\Biggl( 
 - 

\sum 
j\in \scrJ (\bfitx )

\lambda j,\ell 
| sj | 

\Biggr) 
1B\ell 

,(8)

where Z\lambda ,\bfitx =
8\sum 

\ell =1

exp

\Biggl( 
 - 

\sum 
j\in \scrJ (\bfitx )

\lambda j,\ell 
| sj | 

\Biggr) 
| B\ell | .(9)

Proof. Taking the logarithm of (6), one can group the terms corresponding to the same
pixel \bfitx so that

 - log
dP\lambda 

d\theta 
 - logZ\lambda =

\sum 
j\in \scrJ ,1\leqslant \ell \leqslant 8

\lambda j,\ell fj,\ell (\theta ) =
\sum 
\bfitx \in \Omega 

\varphi \lambda ,\bfitx (\theta (\bfitx )),(10)

where \varphi \lambda ,\bfitx =

8\sum 
\ell =1

\Biggl( \sum 
j\in \scrJ (\bfitx )

\lambda j,\ell 
| sj | 

\Biggr) 
1B\ell 

.(11)

We thus obtain that P\lambda can be written in a separable form.
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On the one hand, this proposition shows that for a given \lambda , one can easily sample from the
model P\lambda . On the other hand, it also allows us to compute several statistics associated with
this model. In particular, we can compute for any bounded measurable function \psi : \BbbT \rightarrow \BbbC 

(12) \BbbE P\lambda 
[\psi (\Theta (\bfitx ))] =

\sum 8
\ell =1 exp

\Bigl( 
 - 
\sum 

j\in \scrJ (\bfitx )
\lambda j,\ell 

| sj | 

\Bigr) \int 
B\ell 
\psi (t)dt\sum 8

\ell =1 exp
\Bigl( 
 - 
\sum 

j\in \scrJ (\bfitx )
\lambda j,\ell 

| sj | 

\Bigr) 
| B\ell | 

.

It also allows us to compute the expected value of the statistics f(\Theta ) in the model P\lambda (which
will be useful in section 3.3):

(13) \BbbE P\lambda 
[fj,\ell (\Theta )] =

1

| sj | 
\sum 
\bfitx \in sj

\BbbP (\Theta (\bfitx ) \in B\ell ) =
1

| sj | 
\sum 
\bfitx \in sj

exp
\Bigl( 
 - 
\sum 

k\in \scrJ (\bfitx )
\lambda k,\ell 

| sk| 

\Bigr) 
| B\ell | \sum 

1\leqslant \ell \prime \leqslant 8 exp
\Bigl( 
 - 
\sum 

k\in \scrJ (\bfitx )

\lambda k,\ell \prime 
| sk| 

\Bigr) 
| B\ell \prime | 

.

But it remains to show how to estimate \lambda in order to satisfy the constraints (5). These
constraints can be rewritten as

(14) \forall j, \ell ,
\sum 
\bfitx \in sj

1

Z\lambda ,\bfitx 
exp

\Biggl( 
 - 

\sum 
k\in \scrJ (\bfitx )

\lambda k,\ell 
| sk| 

\Biggr) 
| B\ell | = | \{ \bfitx \in sj ; \theta 0(\bfitx ) \in B\ell \} | .

Notice that this system is highly nonlinear and is in general difficult to solve.

A simple case: Nonoverlapped SIFT subcells. When a SIFT subcell sj is not overlapped,
we have, for any \bfitx \in sj , | \scrJ (\bfitx )| = 1 and therefore

(15) Z\lambda ,\bfitx =
8\sum 

\ell =1

exp

\Biggl( 
 - 
\lambda j,\ell 
| sj | 

\Biggr) 
| B\ell | .

Then (14) gives

(16) \forall \ell , 1

Z\lambda ,\bfitx 
exp

\Biggl( 
 - 
\lambda j,\ell 
| sj | 

\Biggr) 
=
| \{ \bfitx \in sj ; \theta 0(\bfitx ) \in B\ell \} | 

| sj | | B\ell | 
= fj,\ell (\theta 0),

which gives the marginal distribution on any \bfitx \in sj :

(17)
1

Z\lambda ,\bfitx 
e - \varphi \lambda ,\bfitx =

8\sum 
\ell =1

| \{ \bfitx \in sj ; \theta 0(\bfitx ) \in B\ell \} | 
| sj | | B\ell | 

1B\ell 
=

8\sum 
\ell =1

fj,\ell (\theta 0)
1

| B\ell | 
1B\ell 

.

So when the subcells do not overlap, the maximum entropy distribution only amounts to
independent resampling of the local HOGs, as expected. Notice that we indeed obtain a
unique maximal entropy distribution. However, the solutions \lambda are only unique up to the
addition of a constant: indeed the last calculation shows that for a nonoverlapped subcell sj ,
there exists a constant cj > 0 such that

(18) \forall \ell , \lambda j,\ell =  - | sj | (log fj,\ell (\theta 0) + log cj).



2316 A. DESOLNEUX AND A. LECLAIRE

Maximum-likelihood estimation. If the SIFT subcells intersect, there is no longer an
explicit solution. To cope with that, as in [69] we use a numerical scheme to find the maximum
entropy distribution P\lambda . The solution can be obtained with a traditional maximum likelihood
estimation technique, as will be detailed here. Indeed, the minus-log-likelihood function can
be written as

(19) \Phi (\lambda ) = logZ\lambda +
\sum 
j,\ell 

\lambda j,\ell fj,\ell (\theta 0).

The gradient of \Phi can be obtained by differentiating the partition function

(20)
\partial logZ\lambda 

\partial \lambda j,\ell 
=

1

Z\lambda 

\partial Z\lambda 

\partial \lambda j,\ell 
=  - \BbbE P\lambda 

\bigl[ 
fj,\ell (\Theta )

\bigr] 
,

which gives

(21)
\partial \Phi 

\partial \lambda j,\ell 
= fj,\ell (\theta 0) - \BbbE P\lambda 

\bigl[ 
fj,\ell (\Theta )

\bigr] 
.

Notice that \nabla \Phi (\lambda ) = 0 if and only if P\lambda satisfies the constraints (5).
Similarly, we can also obtain the second order derivatives

(22)
\partial 2\Phi 

\partial \lambda j,\ell \partial \lambda j\prime ,\ell \prime 
= \BbbE P\lambda 

\Bigl[ \bigl( 
fj,\ell (\Theta ) - \BbbE P\lambda 

[fj,\ell (\Theta )]
\bigr) \bigl( 
fj\prime ,\ell \prime (\Theta ) - \BbbE P\lambda 

[fj\prime ,\ell \prime (\Theta )]
\bigr) \Bigr] 
.

One can observe that this Hessian matrix \nabla 2\Phi (\lambda ) is actually the covariance of the vector
f(\Theta ) when \Theta has distribution P\lambda . In particular it is a semipositive definite matrix, which
shows that \Phi is a convex function. The global minima of \Phi are exactly the points \lambda where
\nabla \Phi vanishes, which is equivalent to having the constraints (5) on P\lambda .

Therefore, we can compute the solution P\lambda by a gradient descent algorithm in order to
minimize \Phi . The complete algorithm is summarized in section 3.3. Since \Phi is not strictly
convex, we will not have a guarantee of convergence on the iterates, but on the function values.
Since | fj,\ell (\theta )| \leqslant 1, it is straightforward to see that all coefficients of the Hessian \nabla 2\Phi (\lambda ) have
modulus \leqslant 1. Therefore, the \ell 2 operator norm of \nabla 2\Phi is bounded by 8| \scrJ | , which implies that
\nabla \Phi is L-Lipschitz with L = 8| \scrJ | . Denoting by \lambda k the iterates of the gradient descent with
constant step size h < 2

L , [48, Thm. 2.1.14] gives

(23) \Phi (\lambda k) - min\Phi = \scrO 
\Bigl( 1
k

\Bigr) 
.

Let us also mention that since \Phi is convex smooth, it would be possible to use higher order
optimization schemes to minimize \Phi . However, Newton's method will be in general too costly
because of the dimension of the system and because the Hessian may be ill-conditioned.

3.2. Monoscale Poisson reconstruction. Now that we have built a random orientation
field \Theta with maximum entropy distribution P\lambda , we will use it to propose a target vector field V
for the image gradient. More precisely, we set the gradient magnitude at \bfitx in a deterministic
manner, as the inverse scale of the smallest subcell that covers \bfitx . For pixels \bfitx which lie
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outside the SIFT subcells, we set V (\bfitx ) = 0. This choice allows us to give more weight to the
locations for which we have information at a finer scale. It is also motivated by the following
homogeneity argument. Assume that u : \BbbR 2 \rightarrow \BbbR has a keypoint (\bfitx , \sigma ), and for a > 0 let
v(\bfity ) = u(\bfity a ). Then, thanks to Proposition 1, v has a keypoint (a\bfitx , a\sigma ). Let us compare the
mean gradient magnitude at scale \sigma in the corresponding subcell s to the analogous quantity
for v. A simple computation shows that

1

| as| 

\int 
\lambda s
| \nabla ga\sigma \ast v(\bfity )| d\bfity =

1

a

1

| s| 

\int 
s
| \nabla g\sigma \ast u(\bfity )| d\bfity ,

so that the mean gradient magnitude in the subcell is multiplied by 1
a with the change of

scale. From this calculation we get the following remark: if two very similar shapes (with
similar gray levels) are seen in the image at two different scales with ratio a, then we can
obtain a pairwise matching of their SIFT keypoints, and the ratio between the mean gradient
magnitude of the two matched subcells is 1/a. Of course this remark does not extend to the
comparison of two SIFT subcells with very different geometric content, but it still provides a
general rule for fixing the gradient magnitude as the inverse of the scale. Therefore, we get
the random objective vector field

(24) \forall \bfitx \in \Omega , V (\bfitx ) =
\Bigl( 

max
j\in \scrJ (\bfitx )

1

\sigma j

\Bigr) 
ei\Theta (\bfitx )1\scrJ (\bfitx )\not =\emptyset .

The aim of the Poisson reconstruction is to compute an image whose gradient is as close
as possible to the vector field V = (V1, V2). In the case of image editing, this technique has
been proposed by P\'erez, Gangnet, and Blake [51] in order to copy pieces of an image into
another one in a seamless way. More precisely, the goal is to minimize the functional

(25) F (u) =
\sum 
\bfitx \in \Omega 
\| \nabla u(\bfitx ) - V (\bfitx )\| 22.

Since F (c+ u) = F (u) for any constant c, we can impose
\sum 

\bfitx \in \Omega u(\bfitx ) = 0. Thus we set

(26) U = Argmin

\Biggl\{ 
F (u) ; u : \Omega \rightarrow \BbbR and such that

\sum 
\bfitx \in \Omega 

u(\bfitx ) = 0

\Biggr\} 
.

If we use periodic boundary conditions for the gradient, we can solve this problem with
the discrete Fourier transform [43]. Indeed, if we use the simple derivation scheme based on
periodic convolutions

(27) \nabla u(\bfitx ) =
\biggl( 
\partial 1 \ast u(\bfitx )
\partial 2 \ast u(\bfitx )

\biggr) 
, where

\biggl\{ 
\partial 1 = \delta (0,0)  - \delta (1,0),
\partial 2 = \delta (0,0)  - \delta (0,1),

the problem can be expressed in the Fourier domain with Parseval formula since

F (u) =
1

| \Omega | 
\sum 
\bfitxi 

| \widehat \partial 1(\bfitxi )\widehat u(\bfitxi ) - \widehat V1(\bfitxi )| 22 + | \widehat \partial 2(\bfitxi )\widehat u(\bfitxi ) - \widehat V2(\bfitxi )| 22.(28)
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Thus, for each \bfitxi we have a barycenter problem which is simply solved by

(29) \forall \bfitxi \not = 0, \widehat U(\bfitxi ) =
\widehat \partial 1(\bfitxi )\widehat V1(\bfitxi ) + \widehat \partial 2(\bfitxi )\widehat V2(\bfitxi )
| \widehat \partial 1(\bfitxi )| 2 + | \widehat \partial 2(\bfitxi )| 2 and \widehat U(0) = 0.

Let us emphasize (with the capital letter U) that the solution of this problem is random
because the target field V is random.

Using the notation \nabla = (\partial 1, \partial 2)
T , \widehat \nabla = (\widehat \partial 1, \widehat \partial 2)T , z\ast = \=zT , we can write

(30) \widehat U(\bfitxi ) = \widehat \nu (\bfitxi )\widehat V (\bfitxi ), where \widehat \nu (\bfitxi ) = \Biggl\{ \widehat \nabla (\bfitxi )\ast 

| \nabla (\bfitxi )| 2 if \bfitxi \not = 0,

0 if \bfitxi = 0.

Notice that \widehat \nu (\bfitxi ) \in \BbbC 1\times 2 and \widehat V (\bfitxi ) \in \BbbC 2\times 1, so that (30) is equivalent to

(31) U = \nu \ast V = \nu 1 \ast V1 + \nu 2 \ast V2.

In other words, \nu is the (vector-valued) convolution kernel associated to the Poisson recon-
struction. This expression allows us to compute the moments of the random field U (see also
section 4.3 for a detailed look at a more general calculation).

3.3. Algorithm. Here we summarize the algorithm for estimating and sampling the Max-
Ent model proposed in this section. In Figure 3 we display an example of reconstruction with
the MaxEnt model.

Algorithm: Estimating and Sampling the MaxEnt Model

\bullet Maximum-likelihood estimation of \lambda 
-- Compute the observed statistics f(\theta 0) = (fj,\ell (\theta 0))j,\ell .
-- Initialization \lambda \leftarrow 0. Choose a step size h < 4

| \scrJ | .

-- For N(= 10000) iterations, compute \=f = \BbbE P\lambda 
[f ] using (13) and set

\lambda \leftarrow \lambda  - h(f(\theta 0) - \=f).

\bullet Draw a sample \theta according to the distribution P\lambda .
\bullet Compute the corresponding target vector field

(32) V (\bfitx ) =
\Bigl( 

max
j\in \scrJ (\bfitx )

1

\sigma j

\Bigr) 
ei\theta (\bfitx )1\scrJ (\bfitx )\not =\emptyset .

\bullet Compute a sample u of MaxEnt via the Poisson reconstruction (29).

For images having many SIFT keypoints in overlapping positions, this algorithm may be
slow to converge, as can be observed on the case of Figure 3. This case is relatively simple
because it has only 187 keypoints, but this corresponds already to 8\times 16\times 187 \approx 24000 \lambda j,\ell 
parameters to estimate. This is why we use a stopping criterion based on a maximal number
of iterations.
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Figure 3. Reconstruction with the MaxEnt model. In the first row from left to right, we display an
original image with 187 oriented keypoints superimposed, a sample of the associated MaxEnt model, and the
expectation of the MaxEnt model. In the second row we display the evolution of \Phi along the iterates, and also the
behavior of the difference between iterates \Delta \lambda k = \lambda k  - \lambda k - 1. The value of \Phi stabilizes in about 105 iterations.
One can remark that both reconstructions show several important structures of the original image. The mean
reconstruction is of course smoother than a sample of the model (because pixels are sampled independently; see
Proposition 3).

3.4. Discussion on MaxEnt model. One drawback of MaxEnt is that the guarantee on
the local distributions of orientations is lost after the Poisson reconstruction step. One way
to cope with that would be to consider a model that operates directly on the image values,
and not on the orientation field. Theorem 2 could be extended to statistics like

(33) \~fj,\ell (u) =
1

| sj | 
\sum 
\bfitx \in sj

1B\ell 
(Angle(\nabla u(\bfitx ))).

It is even possible to consider multiscale statistics using \nabla g\sigma j \ast u instead of \nabla u (as will be
the case in section 4). But the analogue of Proposition 3 would not hold for these models,
so that sampling should rely on a Gibbs strategy. Its cost would be clearly prohibitive in the
multiscale case due to the large Markov neighborhood size. Even in the monoscale case the
convergence of this Gibbs sampler may be very long depending on the parameters \lambda ; and since
we would need one sample per iteration of gradient descent to estimate \lambda , we chose to leave
it aside and concentrate on models with reasonably fast sampling.

Also, one can consider another orientation model in which the local HOGs are computed
with a quantization that depends on the keypoint orientation. The independence property
still holds for this model, and the marginal orientations still have a piecewise constant density,
but the number of parameters would be much larger (there would be as many \ell 's as bins of a
subdivision that is adapted to all keypoints orientations). Therefore this model is practically
intractable, and also only of minor interest. Indeed, in view of the results of Figure 3, it is
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likely that the used quantization has only a minor impact on the visual results (provided that
we still have a minimal number of bins).

4. Multiscale Poisson model. In this section, we propose a stochastic model, called MS-
Poisson, for reconstruction using multiscale local HOGs computed in SIFT subcells. This
new model is based on a heuristic algorithm for orientation resampling in all SIFT subcells.
Therefore, in contrast to the MaxEnt model, the MS-Poisson model can be straightforwardly
sampled using the multiscale local HOGs and does not require an iterative estimation proce-
dure. Another difference is that MS-Poisson is designed to combine information at multiple
scales, whereas MaxEnt only operates with the gradient at scale 0.

4.1. Construction of MS-Poisson model.

Extracted statistics. The MS-Poisson model is based on local statistics on multiscale
gradient orientations. More precisely, in sj we extract the quantized HOG at scale \sigma j :

(34) Hj,\ell =
1

| sj | 
\bigm| \bigm| \bigl\{ \bfitx \in sj ; Angle(\nabla g\sigma j \ast u0)(\bfitx ) - \alpha j \in [(\ell  - 1)\pi 4 , \ell 

\pi 
4 )
\bigr\} \bigm| \bigm| .

In view of resampling, this local HOG can be identified to a piecewise constant density func-
tion:

(35) hj =
4

\pi 

8\sum 
\ell =1

Hj,\ell 1[\alpha j+(\ell  - 1)\pi 
4
,\alpha j+\ell \pi 

4
).

Notice that, in contrast to the statistics (4) used in the MaxEnt model, the quantization here
depends on the local orientation \alpha j .

Target vector fields at multiple scales. Using the local orientation distributions hj , we
define vector fields Vj : \Omega \rightarrow \BbbR 2 that will serve as objective gradients at scale \sigma j in the SIFT
subcell sj . We propose setting

(36) \forall \bfitx \in \Omega , Vj(\bfitx ) =
1

\sigma j
ei\gamma j(\bfitx )1sj (\bfitx ),

where the orientations \gamma j(\bfitx ) are independently sampled according to the distribution hj .
Again, as justified in section 3.2, we set the gradient magnitude in a deterministic way using
the inverse of the scale \sigma j . Once these vector fields Vj have been sampled, we obtain an image
U by solving a multiscale Poisson problem, as explained in the next subsection.

4.2. Multiscale Poisson reconstruction. In order to simultaneously constrain the gradi-
ent at several scales (\sigma j)j\in \scrJ , we propose considering the following multiscale Poisson energy:

(37) G(u) =
\sum 
j\in \scrJ 

w(\sigma j)
\sum 
\bfitx \in \Omega 
\| \nabla (g\sigma j \ast u)(\bfitx ) - Vj(\bfitx )\| 22,

where g\sigma is the Gaussian kernel of standard deviation \sigma , Vj = (Vj,1, Vj,2)
T is the objective

gradient at scale \sigma j , and \{ w(\sigma j), j \in \scrJ \} is a set of weights. In our application, since there are
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more keypoints in the fine scales (i.e., with small \sigma j), and since the keypoints at fine scales
are generally more informative, a reasonable choice is to take all weights w(\sigma j) = 1. But we
keep these weights in the formula for the sake of generality. We thus set

(38) U = Argmin

\Biggl\{ 
G(u) ; u : \Omega \rightarrow \BbbR and such that

\sum 
\bfitx \in \Omega 

u(\bfitx ) = 0

\Biggr\} 
.

Again, with periodic boundary conditions, this problem can be expressed in the Fourier
domain as

(39) G(u) =
1

| \Omega | 
\sum 
j\in \scrJ 

\sum 
\bfitxi 

w(\sigma j)
\Bigl( 
| \widehat g\sigma j (\bfitxi )

\widehat \partial 1(\bfitxi )\widehat u(\bfitxi ) - \widehat Vj,1(\bfitxi )| 22 + | \widehat g\sigma j (\bfitxi )
\widehat \partial 2(\bfitxi )\widehat u(\bfitxi ) - \widehat Vj,2(\bfitxi )| 22\Bigr) .

As for the monoscale Poisson problem, the solution U is still a barycenter given by \widehat U(0) = 0
and

(40) \forall \bfitxi \not = 0, \widehat U(\bfitxi ) =

\sum 
j\in \scrJ 

w(\sigma j)\widehat g\sigma j (\bfitxi )
\Bigl( \widehat \partial 1(\bfitxi )\widehat Vj,1(\bfitxi ) + \widehat \partial 2(\bfitxi )\widehat Vj,2(\bfitxi )\Bigr) \sum 

j\in \scrJ 
w(\sigma j)| \widehat g\sigma j (\bfitxi )| 2

\Bigl( 
| \widehat \partial 1(\bfitxi )| 2 + | \widehat \partial 2(\bfitxi )| 2\Bigr) .

Let us remark that in the above formula, we have \widehat g\sigma j (\bfitxi ) \in \BbbR since g\sigma j is even.

Regularization. Notice that, depending on the finest scale, the denominator may nu-
merically vanish in the high frequencies because of the term \widehat g\sigma j (\bfitxi ) (as it is the case in a
deconvolution problem). Therefore, it may be useful to add a regularization term controlled
by a parameter \mu > 0. Then, if we set

(41) U = Argmin

\Biggl\{ 
G(u) + \mu \| \nabla u\| 22 ; u : \Omega \rightarrow \BbbR and such that

\sum 
\bfitx \in \Omega 

u(\bfitx ) = 0

\Biggr\} 
,

then we get the well-defined solution U given by \widehat U(0) = 0 and

(42) \forall \bfitxi \not = 0, \widehat U(\bfitxi ) =

\sum 
j\in \scrJ 

w(\sigma j)\widehat g\sigma j (\bfitxi )
\Bigl( \widehat \partial 1(\bfitxi )\widehat Vj,1(\bfitxi ) + \widehat \partial 2(\bfitxi )\widehat Vj,2(\bfitxi )\Bigr) \left(  \mu +

\sum 
j\in \scrJ 

w(\sigma j)| \widehat g\sigma j (\bfitxi )| 2
\right)  \Bigl( | \widehat \partial 1(\bfitxi )| 2 + | \widehat \partial 2(\bfitxi )| 2\Bigr) 

.

As we will see in section 5.1, the parameter \mu allows us to attenuate the noise generated by
the randomly sampled gradient fields in the fine-scale SIFT subcells. We will see (empirically)
that the value \mu = 50 realizes a good compromise between recovered details and smoothness.

We end this subsection by summarizing the MS-Poisson sampling algorithm.
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Algorithm: Sampling the MS-Poisson Model

\bullet In each subcell sj , draw independent orientations \gamma j(\bfitx ),\bfitx \in sj according to the p.d.f.
hj .
\bullet Set Vj =

1
\sigma j
1sje

i\gamma j .

\bullet Compute U by solving the MS-Poisson problem (41) with targets Vj , with w(\sigma j) = 1
and \mu = 50.

Remark. In (42), one can observe that the solution to MS-Poisson actually solves a mono-
scale Poisson problem with objective vector field V whose Fourier transform is given by

(43) \widehat V (\bfitxi ) =

\sum 
j\in \scrJ 

w(\sigma j)\widehat g\sigma j (\bfitxi )
\widehat Vj(\bfitxi )

\mu +
\sum 
j\in \scrJ 

w(\sigma j)| \widehat g\sigma j (\bfitxi )| 2
.

4.3. First and second order moments. In order to compute the statistics of the MS-
Poisson model, we remark that the multiscale Poisson reconstruction is actually a linear
process. Indeed, for each j, let \nu j : \Omega \rightarrow \BbbR 1\times 2 be the vector-valued kernel defined by its
discrete Fourier transform

(44) \forall \bfitxi \not = 0, \widehat \nu j(\bfitxi ) = w(\sigma j)\widehat g\sigma j (\bfitxi )
\widehat \nabla (\bfitxi )\ast \left(  \mu +

\sum 
j\prime \in \scrJ 

w(\sigma j\prime )| \widehat g\sigma j\prime (\bfitxi )| 
2

\right)  | \widehat \nabla (\bfitxi )| 2
and \widehat \nu j(0) = 0.

Then, as in section 3.2, we get the convolutive expression

(45) U =
\sum 
j\in \scrJ 

\nu j \ast Vj =
\sum 
j\in \scrJ 

\Bigl( 
\nu j,1 \ast Vj,1 + \nu j,2 \ast Vj,2

\Bigr) 
.

From this expression we can compute the moments of U . By linearity

(46) \BbbE (U) =
\sum 
j\in \scrJ 

\nu j \ast \BbbE (Vj),

so that computing this expectation only amounts to computing \BbbE (Vj) = 1
\sigma j
1sj\BbbE (ei\gamma j ).

We can also compute the variance. Since the objective fields (Vj)j\in \scrJ are independent, we
have

(47) Var(U(\bfitx )) =
\sum 
j\in \scrJ 

Var(\nu j \ast Vj(\bfitx )).
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Also, the Vj(\bfity ) for different pixels \bfity are independent, so that

Var(\nu j \ast Vj(\bfitx )) = Var
\Bigl( \sum 

\bfity \in \Omega 
\nu j(\bfitx  - \bfity )Vj(\bfity )

\Bigr) 
=
\sum 
\bfity \in \Omega 

Var(\nu j(\bfitx  - \bfity )Vj(\bfity ))(48)

=
\sum 
\bfity \in \Omega 

\nu j(\bfitx  - \bfity )Cov(Vj(\bfity ))\nu 
T
j (\bfitx  - \bfity )(49)

=
\sum 
\bfity \in \Omega 

\nu 2j,1(\bfitx  - \bfity )Var(Vj,1(\bfity )) + \nu 2j,2(\bfitx  - \bfity )Var(Vj,2(\bfity ))(50)

+ 2\nu j,1(\bfitx  - \bfity )\nu j,2(\bfitx  - \bfity )Cov(Vj,1(\bfity ), Vj,2(\bfity )).(51)

Therefore the variance of this model can be obtained by summing convolutions of the kernels
\nu j with the covariances of Vj . Since Vj(\bfity ) = 1

\sigma j
ei\gamma j(\bfity )1sj , where \gamma j(\bfity ) has p.d.f. hj given

by (34), we can explicitly compute its covariance.
More generally, we can compute the covariance between two pixel values of U in a similar

way, which gives

(52) Cov
\bigl( 
U(\bfitx ), U(\bfity )

\bigr) 
=
\sum 
j\in \scrJ 

\sum 
\bfitz \in \Omega 

\nu j(\bfitx  - \bfitz )Cov(Vj(\bfitz ))\nu 
T
j (\bfity  - \bfitz ).

5. Results and discussion. In this section, we give empirical evidence that both models
MS-Poisson and MaxEnt are able to generate images that are similar to the original image
in many aspects, which is confirmed by several quantitative results (in particular based on
normalized correlations). We discuss the impact of the regularization parameter \mu of the
MS-Poisson model on the quality of the sampled images. We also compare MaxEnt and MS-
Poisson in terms of local variance of the sampled images, and also in terms of resulting SIFT
keypoints computed in the sampled images. After explaining how to adapt the MS-Poisson
model to operate on true SIFT descriptors we compare with previous approaches of [64, 19].
Finally we discuss the impact of the keypoints definition on the quality of the reconstruction.

5.1. Results with MaxEnt and MS-Poisson model.

5.1.1. Comparison between MaxEnt and MS-Poisson. Let us first compare the recon-
struction results obtained with MaxEnt and with MS-Poisson. In Figure 4, using an original
image with 386 keypoints, we display a sample of MaxEnt and a sample of MS-Poisson, to-
gether with the expected images of these models. One first remark is that both models are
able to retrieve several geometric structures of the original image, so that much of the seman-
tic content of the image can still be understood. For both models, one can observe that the
samples are very close to the expected image, which will be later confirmed by the variance
analysis in Figure 8.

One crucial difference between MaxEnt and MS-Poisson is that they do not rely on the
same gradient information. Indeed, MS-Poisson exploits gradients extracted at multiple scales,
while MaxEnt only operates with gradients at scale \sigma = 0 (i.e., the same scale as the image).
This is why the results obtained with MS-Poisson will generally look blurrier than those
obtained with MaxEnt. Also, because of the multiscale nature of the input of MS-Poisson, the
corresponding optimization problem had to be regularized, and the adopted H1-regularization
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Original MS-Poisson Sample MaxEnt Sample
r = 0.7523 r = 0.5796

Keypoints MS-Poisson Mean MaxEnt Mean
r = 0.7568 r = 0.5807

Poisson global MS-Poisson Poisson
True orientations True MS orientations True orientations

r = 0.5239 r = 0.7910 r = 0.6155

Figure 4. Reconstruction results with MaxEnt and MS-Poisson models. In the first column we display
an original image, the corresponding oriented keypoints, and the Poisson reconstruction with true gradient
orientations of the whole image and magnitude set to 1. In the second column we display a sample of the
MS-Poisson model, the expectation of this model, and the multiscale Poisson reconstruction using the true
multiscale gradient orientations in the SIFT subcells. In the third column, we display a sample of the MaxEnt
model, the expectation of this model, and the Poisson reconstruction using the true gradient orientations in the
SIFT subcells. For each result we indicate the value of the normalized correlation r with respect to the original
image. See the text for comments on these results. (Images are better seen in the electronic version.)

term is a source of blur in the result as well. This is confirmed by Figure 5, where we display
several MS-Poisson reconstructions with varying regularization parameter \mu . In Figure 5 and
in many other experiments, we observed that the parameter \mu = 50 realizes a good compromise
between preserving geometric structures and removing spurious oscillations.

In the last row of Figure 4, we also compare with the reconstructions obtained with the true
gradient orientations (resp., multiscale gradient orientations) computed in the SIFT subcells
and the gradient magnitude computed as in MaxEnt (resp., MS-Poisson). So the difference
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\mu = 0.01 \mu = 0.1 \mu = 1
r = 0.5693 r = 0.70723 r = 0.74758

\mu = 50 \mu = 100 \mu = 1000
r = 0.75229 r = 0.74938 r = 0.73518

Figure 5. Influence of the regularization parameter \mu in MS-Poisson. As expected, increasing \mu penalizes
more the L2 norm of the gradient and thus makes the image blurrier. Here again we indicate the value of the
normalized correlation r with respect to the original image. We empirically observed that a good compromise
between recovered details and smoothness is often attained around \mu = 50. (Images are better seen in the
electronic version.)

with MaxEnt (or MS-Poisson) is that local (multiscale) gradient orientations are not pooled
in histograms but directly extracted pixelwise; in other words, there is no local resampling
of the orientations. Thus, in some sense, these images are the best ones we could hope
for using Poisson reconstruction. Comparing these images with samples of MS-Poisson and
MaxEnt precisely shows the effect of local resampling of the (multiscale) orientations; observe
in particular the man's face and also the folds of his shirt. These images thus correspond to
much more precise reconstructions, but it is interesting to notice that in certain regions where
attention will be focused (near the face, for example), there are enough keypoints at fine scales
in order to get back satisfying pieces of images even after local resampling. Also, one must
keep in mind that the loss of the gradient magnitude information is in practice difficult to
cope with and may force us to erroneously amplify the noise in the reconstruction. As one
can see in the bottom left of Figure 4, it is obvious if one tries to set the gradient magnitude
to 1 in the global Poisson reconstruction.

5.1.2. Quantitative evaluation. As mentioned in [15], there is no reliable criterion to
quantitatively evaluate the quality of the result for such reconstruction problems. In our
context where only gradient orientations are extracted, it is reasonable to evaluate the recon-
struction quality based on the normalized correlation to the input image (which is invariant
under affine contrast change). If u, v : \Omega \rightarrow \BbbR are two images, the normalized correlation is
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MS-Poisson sample 5\times 5 9\times 9

MaxEnt sample 5\times 5 9\times 9

Figure 6. Comparison between MS-Poisson and MaxEnt with local normalized correlations. In the left
column, we display samples of the models MS-Poisson and MaxEnt. In the other columns, we display the local
normalized correlation of the sample (first column) with respect to the original image. The local normalized
correlations are computed on patch sizes 5 \times 5 and 9 \times 9, with values in [ - 1, 1]. See the text for comments.
(Images are better seen in the electronic version.)

defined as

(53) r(u, v) =
1

| \Omega | 
\sum 
\bfitx \in \Omega 

\biggl( 
u(\bfitx ) - \=u

\sigma u

\biggr) \biggl( 
v(\bfitx ) - \=v

\sigma v

\biggr) 
\in [ - 1, 1],

where \=u = 1
| \Omega | 
\sum 

\bfitx \in \Omega u(\bfitx ) and \sigma 2u = 1
| \Omega | 
\sum 

\bfitx \in \Omega (u(\bfitx )  - \=u)2. In Figure 4, for each result we
have indicated the normalized correlation value r. Surprisingly, the higher correlation values
are attained with results linked to the MS-Poisson model (even if it only has access to HOGs
computed on a blurred gradient). In addition, the value attained by the samples (or mean)
of MS-Poisson is close to the one obtained with the true multiscale HOGs. In contrast, the
correlations obtained with the MaxEnt model are lower. This is better explained by the re-
sults of Figure 6, in which we display values of local normalized correlations obtained with
both models: for each pixel \bfitx we extract patches p\bfitx (u), p\bfitx (v) of compared images u, v and
compute the normalized correlation r(p\bfitx (u), p\bfitx (v)). On the one hand, the MaxEnt result
is everywhere much noisier (because gradient orientations are sampled independently). On
the other hand, the regularization involved in MS-Poisson helps to propagate good correla-
tions values in regions located near SIFT subcells. Also, this criterion based on normalized
correlation confirms the choice for the regularization parameter \mu = 50; see Figure 5.

Another interesting way of performing quantitative evaluation in our context is to com-
pare the HOGs computed in the SIFT subcells to those of the original image. For each
subcell, we can compute histograms Hu, Hv of gradient orientations (with 8 bins) for the
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Original MaxEnt MS-Poisson

Objective Objective

Orientations Orientations Orientations

Figure 7. Orientation fields of the original and reconstructions. In the left column, we display the original
image (top) and the corresponding gradient orientations (bottom). In the middle (MaxEnt) and right (MS-
Poisson) columns, we display the orientation of the objective vector field (before Poisson reconstruction, top)
and the orientation of the resulting gradient field (after Poisson reconstruction, bottom). In the regions that
are covered by several SIFT subcells, one can see that the local HOGs are quite well preserved (especially for
MaxEnt), even if the orientations are locally shuffled. One can also observe that the Poisson reconstruction
step smoothes slightly the orientation field. (Images are better seen in the electronic version.)

images u, v and then compute the total variation distance between these histograms, defined
as 1

2

\sum 8
\ell =1 | Hu(\ell )  - Hv(\ell )| \in [0, 1]. Again, we use gradients at scale 0 when considering the

MaxEnt model, and scaled gradients when considering the MS-Poisson model. We can then
average the HOG distances obtained for all SIFT subcells, weighted by the number of pixels
in each subcell. With this methodology, for the image of Figure 4, we obtain a mean distance
around 0.27 for MS-Poisson and 0.16 for MaxEnt. This value is lower for MaxEnt because
the model is inherently made to satisfy the HOG constraint. One can better understand
these results by examining the orientation fields of both models, as proposed in Figure 7, in
particular the effect of the final Poisson reconstruction (keeping in mind that MS-Poisson can
also be written with a single objective vector field given by (43)). In this figure, one clearly
observes that the objective vector field for MS-Poisson is already very smooth (and certainly
too smooth to account for fine local variations in orientation). In contrast the objective vector
field for MaxEnt better accounts for the fine variations, but is much noisier, even after the
Poisson reconstruction step.

5.1.3. Second order statistics. As we have seen in section 4.3, it is possible to compute
the second order statistics of the reconstructed image in each model. In Figure 8 we display
the standard deviations of all pixel values in each model. One first remark is that MaxEnt has
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STD in MS-Poisson MS-Poisson
(max = 0.51\%\times c) Mean (blue), STD (red)

STD in MaxEnt MaxEnt
(max = 48\%\times c) Mean (blue), STD (red)

Figure 8. Standard deviations of MS-Poisson and MaxEnt models. On the top left we display the original
image. In the rest of the figure we display the images formed with the standard deviations (STD) of the models
MS-Poisson (first row) and MaxEnt (second row). In the second column, we display the raw STD values. In
the third column, the red component corresponds to the raw STD values (same as in the second column), and
the blue component corresponds to the mean image m = \BbbE (U) of the model (MaxEnt or MS-Poisson). Let us
emphasize that for better visualization the images of the second column are renormalized so that the white color
corresponds to the indicated maximum value (expressed as a percentage of the empirical standard deviation
c =

\sqrt{} 
| \Omega |  - 1

\sum 
m(\bfitx )2  - (| \Omega |  - 1

\sum 
m(\bfitx ))2 of the mean image m). These results clearly indicate that the MS-

Poisson model is much more concentrated around its expectation than MaxEnt. (Images are better seen in the
electronic version.)

in general a much larger variance than MS-Poisson, which can be explained by the fact that
the output of MS-Poisson is in some sense a weighted average of many local reconstructions.
Also it is interesting to see that the image regions with larger variance are located in the SIFT
subcells which contain sharp geometric details. That being said, the variance of both of these
models is relatively small compared to the global range of the mean image, which indicates
that both models have quite small variations around the mean.

5.1.4. Discard boundary keypoints. Let us emphasize that in our experiments, we used
all the keypoints computed by the SIFT methods and did not discard keypoints located near
the image boundaries. The positions of the corresponding local extrema in the normalized
scale-space are indeed highly dependent on the boundary conditions used to compute the
scale-space. This explains why SIFT keypoints near the image boundaries are often discarded
for particular applications, e.g., image matching. In our reconstruction problem, there is no
reason to discard such keypoints, and we use the information available in SIFT subcells as
soon as they intersect the image domain (if the SIFT subcell is not entirely contained in the
domain, we consider only the pixels in the intersection of the subcell and the domain). But
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Figure 9. Discard keypoints near image boundary. In this figure, we examine the effect of discarding key-
points whose associated SIFT cell is not entirely contained in the image domain. The displayed reconstructions
are samples of the MS-Poisson model.

still, it is clear that for some images the reconstruction will be quite different when discarding
those keypoints. For example, in the case of Figure 9, if boundary keypoints are discarded,
then several parts of the man's body are not as properly retrieved in the reconstruction, thus
affecting the semantic understanding of the image.

5.1.5. Matching keypoints between the original and reconstructed images. Finally, it
is interesting to compare the keypoints computed on the original image and the ones computed
on several samples of the models. As one can see in Figure 10, we get back similar keypoints
in many regions of the image, but still with some variations in position, scale, and orientation.
In particular, we observe variations when taking different samples of the model (sometimes
some keypoints associated with low contrast regions may even disappear). Notice also that
we get back fewer keypoints in the MS-Poisson model; indeed, since it is more regular we lose
some extrema in the scale-space. In addition, the regularization tends to change the scale of
the structures, and thus the scales of the keypoints is often larger than in the original image.

In order to give a more quantitative evaluation of the variations of the keypoints over
different samples of the model, it is possible to use the matching algorithm available with the
online implementation [53] (we used the proposed default parameters). This algorithm follows
the matching method proposed in [32], which essentially pairs SIFT keypoints by thresholding
the ratio between the distances to the first and second nearest neighbors (computed with
the \ell 2-distance between SIFT descriptors). First we can comment on what happens when
matching two different samples of the same model. For the MS-Poisson model, when matching
the two samples shown in Figure 10, among the 206 keypoints found on the first image (resp.,
211 on the second image), 150 keypoints are matched. The mean spatial distance (resp., mean
scale variation, mean angle variation) between matched keypoints is about 0.54 (resp., 0.15,
0.050). Similar numbers can be given for the MaxEnt model, but in this case much fewer
keypoints are correctly matched: of the 452 keypoints found on the first image (resp., 458
on the second image), only 184 are matched. This reflects again the larger variance of the
MaxEnt model.

More interestingly, we can try to match the SIFT keypoints between the original image
and the reconstructions. Unfortunately, only a few SIFT points are properly matched this
way: among the 477 keypoints found in the original image, around 10 keypoints are properly
matched in samples of the MS-Poisson model, and no keypoints are matched when comparing
to a sample of MaxEnt. This shows that even if these models are able to recover gradient
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Original Samples of MS-Poisson Samples of MaxEnt

Figure 10. Keypoints after reconstruction. In the first column, we display an original image (courtesy
of J. Delon) and the same image with its SIFT keypoints. In the second column, we display two samples of
the MS-Poisson model. In the third column, we display two samples of the MaxEnt model. We display the
keypoints associated to these images as superimposed blue arrows. Notice that several keypoints are retrieved
after reconstruction, with still some variations in position and orientation. Notice also that we observe some
variations in the keypoints associated to different samples of these models. See the text for additional comments.
(Images are better seen in the electronic version.)

orientations in a somehow blurry manner, this is not sufficient to precisely get back the content
of SIFT descriptors. By the way, the fact that only 75\% (resp., 50\%) of the keypoints are
matched between two samples of MS-Poisson (resp., MaxEnt) illustrates the sensitivity of the
SIFT descriptors to small random perturbations.

5.2. Reconstruction from true SIFT descriptors. The two models MS-Poisson and Max-
Ent are designed to propose stochastic reconstructions of an image based on simplified SIFT
descriptors, that is, multiscale HOGs extracted around the SIFT keypoints. But it is also
possible to test these reconstruction models with the true SIFT descriptors. For that, for each
keypoint, we still consider the location, scale, and principal orientation, but, following the dis-
cussion of section 2.2, starting from the normalized feature vector (fk) \in \BbbR 128, we improperly
build target histograms for the 16 corresponding SIFT subcells: for each p \in \{ 1, . . . , 16\} , to
the corresponding pth subcell sj , we associate the discrete histogram

(54) \widetilde Hj,\ell =
f16(p - 1)+\ell \sum 8

\ell \prime =1 f16(p - 1)+\ell \prime 
(1 \leqslant \ell \leqslant 8).
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We can thus sample the MS-Poisson model using the ( \widetilde Hj,\ell ) values as a substitute for the
extracted multiscale HOG (Hj,\ell ).

In Figure 11, we display several reconstruction results obtained with the MS-Poisson
model based on the multiscale HOGs or the true SIFT descriptors. As could be expected,
the reconstruction results obtained with the true SIFT descriptors are not as good as those
obtained from multiscale HOGs; in particular many fine-scale structures are lost, and the
shape of small objects is not recovered in a coherent way (see, for example, the wings in
the butterfly image). However, large-scale structures of the image are still retrieved quite
properly, which often suffices to understand the semantic content of the image.

In order to get sharper results, we should adapt the reconstruction models to account for
the normalizations applied in the original SIFT method. It appears quite straightforward to
adapt the models to histograms computed with linear votes (instead of binary votes). However,
it seems much more difficult to cope with the final normalization and thresholding (see (2)),
which dramatically reduce the quantity of information. Also, in the true SIFT descriptors, the
pixels vote for orientation values with a weight that is proportional to the gradient magnitude.
This explains why it is difficult to retrieve the local HOG from the SIFT descriptors in the
absence of any information about the local gradient magnitude.

5.3. Comparison with previous works. In this subsection, we propose to compare our re-
construction models with those obtained by the methods of Weinzaepfel, J\'egou, and P\'erez [64]
and Dosovitskiy and Brox [19]; see Figure 12. One important difference between these two
other approaches and ours is that our method relies only on the content provided in the SIFT
subcells, while these methods exploit an external database either to copy local information
from patches with similar SIFT descriptors (as in [64]) or to build an up-convolutional neural
network for reconstruction (as in [19]). Thus our work has no intention to outperform these
methods in terms of visual quality of reconstruction (in particular, our method has abso-
lutely no possibility of recovering the color information). Notice that we cannot compare to
the method of [35], which is adapted to ``dense SIFT"" (i.e., SIFT descriptors computed on
a dense set of patches) and not ``sparse SIFT"" (i.e., SIFT descriptors computed around the
keypoints).

There are also minor differences in the extracted information because both of these works
do not rely on the original implementation of the SIFT method. The method of [64] actually
uses ``elliptic"" interest regions (extracted using the Hessian-affine method by [41]) in which
normalized multiscale HOG are computed (in the same way as in the original SIFT method).
In contrast, Dosovitskiy and Brox use circular keypoints and descriptors that are computed
with the VLFeat library [61]. But in order to apply an up-convolutional neural network to
these features, they need to derive a grid-based representation of these features: the image is
divided into 4\times 4 cells, and each cell containing a keypoint is associated with the corresponding
oriented keypoint and feature vector. If there is no keypoint, then they associate the zero
vector, and if there are several keypoints, they randomly choose one of them (see the details
in [19, section III]).

One advantage of the MS-Poisson model, compared to the result of [64], is that it is defined
through the minimization of the global MS-Poisson energy (37). Therefore, it produces images
that are globally coherent while respecting as much as possible the local constraints given by
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r = 0.65 r = 0.56

r = 0.79 r = 0.79

r = 0.81 r = 0.72

r = 0.80 r = 0.77

r = 0.68 r = 0.66

r = 0.74 r = 0.57

r = 0.88 r = 0.83

r = 0.80 r = 0.71

r = 0.84 r = 0.78
Original Keypoints MS-HOG True SIFT

Figure 11. Reconstruction results from multiscale HOG or SIFT descriptors with images from the Live
database [56]. For each row, from left to right, we display an original image, the same image with superim-
posed SIFT keypoints, a sample of the MS-Poisson model obtained from multiscale HOG, and a sample of the
MS-Poisson model obtained from the true SIFT descriptors. Notice that the reconstruction from true SIFT
descriptors is less sharp but still recovers many geometric structures of the initial image.
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Original MS-Poisson Mean

[Weinzaepfel et al., 2011] [Dosovitskiy \& Brox, 2015]

Figure 12. Comparison for SIFT reconstruction. In the first row we display the original image and
the reconstruction results obtained as the expectation of the MS-Poisson model computed on the true SIFT
descriptors (see section 5.2). In the second row we display the results obtained with the methods of [64]
and [19]. Notice that the MS-Poisson model provides images that are blurrier but also more globally coherent
than the ones obtained by the method of [64]. However, this model does not compete with [19] in terms of
restitution and visual quality since it does not rely on any external information.

the multiscale HOGs. In contrast, the result of [64] is clearly affected by stitching artifacts
which are inherent to their reconstruction method. On the other hand, their method is able
to copy pieces of clean patches so that their reconstruction looks locally sharper (but also
noisier).

However, the reconstructed images obtained in [19] are both globally coherent and quite
sharp. Indeed, our method does not rely on an external database, so it cannot compete with
that of [19], and in particular it cannot get back information which is completely lost in the
SIFT descriptors (global contrast, or also color information).

5.4. Reconstruction with other keypoints. In this subsection, we question the very defi-
nition of the SIFT keypoints in terms of synthesis, similarly to what was done in [49]. Indeed,
one can wonder if selecting the local extrema of (\bfitx , \sigma ) \mapsto \rightarrow \sigma 2\Delta g\sigma \ast u(\bfitx ) is the best possible
choice for points of interest in order to extract relevant information for synthesis.

For that, we propose a comparison with two other sets of keypoints extracted in a very
different way. The first choice (``Min-Rec-Error"") is driven by the following intuition: using
the Taylor formula around a point \bfitx , one can write when \sigma \rightarrow 0 that

(55)

\int 
u(\bfitx + \bfitz )g\sigma (\bfitz )d\bfitz  - u(\bfitx ) = \sigma 2\Delta u(\bfitx ) + o(\sigma 2).
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Therefore, near the positions \bfitx where \Delta u(\bfitx ) is close to zero, one can approximately recover
u(\bfitx ) by averaging neighboring values. In this sense, it seems relevant to extract more infor-
mation at the points where the average reconstruction fails, in particular at the maxima of
| \Delta u| .

But one could also directly work with the reconstruction error; we thus propose to extract
local maxima of the function

(56) (\bfitx , \sigma ) \mapsto  - \rightarrow | g\sigma \ast u(\bfitx ) - u(\bfitx )| .

In our implementation, we detect these maxima on a discretized scale-space with 30 scales
s = 2r/6, 0 \leqslant r < 30. Also, in order to draw a comparison with a fixed number of keypoints,
we only keep points having an ``edgeness"" value below a threshold. As in the original SIFT

method, the edgeness measure is obtained as the ratio \mathrm{T}\mathrm{r}(H)2

\mathrm{d}\mathrm{e}\mathrm{t}H of the principal curvatures,
where H is the Hessian of the smoothed image g2 \ast u. The threshold is adapted in order to
get the same number nkp of keypoints as that provided by the SIFT method.

The second and third choices (``Random-unif"" and ``Random-grad"") consist in selecting
keypoints in a random manner. More precisely, for the choice Random-unif, we independently
sample nkp keypoints by choosing uniformly a position \bfitx in the image domain, a uniform
orientation \alpha \in \BbbT , and a scale by sampling an exponential distribution whose parameter is
adjusted so that the expectation is the same as the mean scale of the usual SIFT keypoints.
Modeling by the exponential distribution is empirically justified by the fact that the distribu-
tion of scales of SIFT keypoints is concentrated in the fine scales. For the choice Random-grad,
we do the same except that the positions are randomly drawn using a probability distribution
which is proportional to the gradient magnitude of the smoothed image g2 \ast u.

For these new sets of keypoints, we computed the average image of the MS-Poisson model.
The results are displayed in Figure 13. They clearly indicate that the usual SIFT keypoints
lead to a reconstruction that is visually better than the others. The main problem of the
Min-Rec-Error keypoints is that they do not extract enough small-scale information: for the
examples shown in Figure 13 the average scale of these keypoints is approximately twice as
large as that of the SIFT keypoints. In addition, for both Min-Rec-Error and random key-
points, the spatial locations are not concentrated around geometric details, as can be the
case with the SIFT keypoints. The comparison with Random-grad is particularly interest-
ing; indeed the reconstruction with Random-grad keypoints is slightly better than that with
Random-unif keypoints, but still it fails to recover fine details. The main problem of the
Random-grad approach is that it is not contrast invariant, and thus it favors points with
strong gradients in uniform regions over points in salient regions with low contrast. Thus,
the usual definition of SIFT keypoints (and in particular the thresholding steps) is confirmed
to be a relevant choice for extracting visual information near salient structures, from both
analysis- and synthesis-based perspectives.

6. Conclusion. In this paper we proposed two stochastic models (MaxEnt, resp., MS-
Poisson) for reconstructing an image based only on the information contained in the (monoscale,
resp., multiscale) local HOGs computed in the SIFT subcells. With both models we get back
images which are close to the original in terms of semantic content. This is still true if we
compute the reconstructions based on the true SIFT descriptors. One benefit of these mod-
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r = 0.63 r = 0.64 r = 0.72 r = 0.76

r = 0.61 r = 0.62 r = 0.72 r = 0.69

Min-Rec-Error Random-unif Random-grad SIFT

Figure 13. Reconstruction with other keypoints. The first column (``Minimum reconstruction error"") cor-
responds to the keypoints obtained as local minima of (56). The second (``Random-unif"") and third (``Random-
grad"") columns correspond to the randomly selected keypoints. The last column corresponds to the standard
SIFT keypoints. The original images are displayed in Figures 3 and 4. Above each reconstruction we indicate
the value of the normalized correlation to the original image. See the text in section 5.4 for the precise definition
of these sets of keypoints, and additional comments.

els over competing approaches is that they do not rely on any external image database, and
besides the convolutive expressions found in this paper allow one to compute the statistics of
the corresponding output random fields (e.g., local variance).

However, several questions raised by this work remain open. First it would be interesting to
consider generalizations of the MS-Poisson model with different image priors, i.e., adopt other
regularization terms in the functional. It is likely that solving the corresponding optimization
problem may require an iterative procedure, but on the other hand the solutions may exhibit
cleaner geometric structures which are better extrapolated outside the SIFT subcells. Also,
there is more to discuss about the optimality of keypoints with respect to the quality of
reconstructed images. In particular, here we adopted one unique reconstruction strategy in
order to compare different sets of keypoints. But it seems possible to optimize both the sets
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of keypoints and the reconstruction strategy in order to maximize a criterion linked to the
proximity of the reconstruction to the input original image. This could be thought of as a
kind of auto-encoding procedure in which the encoder is constrained to have a very particular
form (that is, keypoint extractor).
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