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Abstract Exemplar based texture synthesis is defined

as the process of generating, from an input texture sam-

ple, new texture images that are perceptually equiva-

lent to the input. In the present work, we model tex-

ture self-similarity with conditional Gaussian distribu-

tions in the patch space in order to extend the use of

stitching techniques. Then, a multiscale texture synthe-

sis algorithm is introduced, where texture patches are

modeled at each scale as spatially variable Gaussian

vectors in the patch space. The Gaussian distribution

for each patch is inferred from the set of its nearest

neighbours in the patch space obtained from the input

sample. This approach is tested over several real and

synthetic texture images and its results show the effec-

tiveness of the proposed technique for a wide range of

textures.

Keywords Texture Synthesis · Conditional Locally

Gaussian · Patch Size · Multiscale

1 Introduction

Exemplar based texture synthesis is a well known prob-

lem that has many applications in computer graph-

ics, computer vision and image processing, for exam-

ple for fast scene generation, inpainting, and texture

restoration. It is defined as the process of generating,

from an input texture sample, new texture images that

are perceptually equivalent to the input. Texture syn-

thesis algorithms are roughly grouped into two cat-

egories: statistics-based [9,11,21] and non-parametric

patch-based [2,5,6,13,14,18,27]. The first class of al-
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gorithms characterizes a given texture sample by esti-

mating statistical parameters defining the underlying

stochastic process. Although these methods can faith-

fully reproduce some of the global statistics of the sam-

ple and synthesize micro and pseudo-periodic textures,

they generally do not yield high quality visual results

for more structured ones, in particular when the sample

is small and contains large objects. The second category

rearranges local neighbourhoods of the input sample in

a consistent way, and is often able to reproduce highly

structured textures. Even though non-parametric meth-

ods yield visual satisfactory results, they often turn into

practising verbatim copies of large parts of the input

sample.

Statistics-based methods are performed in two steps:

analysis and synthesis. The analysis step identifies a
set of global statistics characterizing the input texture.

The synthesis step creates an image satisfying the es-

timated set of statistics. These methods were inspired

from Julesz work [12], who observed that many texture

pairs having the same second-order statistics would not

be preattentively discerned by humans. The success of

Julesz’ first hypothesis can be checked in [9] where the

authors propose to synthesize textures by randomizing

the Fourier phase of the sample image while maintain-

ing its Fourier modulus, thus preserving the second or-

der statistics of the sample. These statistics are enough

to synthesize micro-textures that can be characterized

by their Fourier modulus but they fail for more struc-

tured ones as can be verified in [8]. Heeger and Bergen

[11] initiated more sophisticated statistics-based meth-

ods describing the input sample by the histograms of its

wavelet coefficients. A new texture image is then cre-

ated when enforcing these statistics on an initial white

noise image. The results of this method are satisfy-

ing for a small class of textures since it only measures
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marginal statistics. Indeed the proposed statistics miss

important correlations between pixels across scales and

orientations. This experimental fact can be verified in

[4]. In [21] Portilla and Simoncelli extended [11] by es-

timating autocorrelations, cross-correlations and statis-

tical moments of the wavelet coefficients of the texture

sample. Compared to the previous statistical attempts,

convincing results are observable on a wide range of tex-

tures. This method, which represents the state of the

art for psychophysically and statistically founded algo-

rithms is nevertheless computationally demanding, and

its convergence is not guaranteed. Its results, though

generally indiscernible from the original samples in a

pre-attentive examination, often present blur and phan-

toms.

Non-parametric patch-based methods constitute a

different category of texture synthesis algorithms. They

were initialized by Efros and Leung [5] who extended

to images Shannon’s Markov random field model ini-

tially devised to simulate text. In analogy with Shan-

non’s algorithm for synthesizing sentences, the texture

is constructed pixelwise. For each new pixel in the re-

constructed image, a patch centered at the pixel is com-

pared to all patches with the same size in the input

sample. The nearest matches in the input help predict

the pixel value in the reconstructed image. Several op-

timizations have been proposed to extend and acceler-

ate this algorithm. Among them, Wei and Levoy [27],

managed to fix the shape and the size of the learning

patch and Ashikmin [2] proposed to extend existing

patches whenever possible instead of searching in the

entire sample texture. Still, these pixelwise algorithms

are not always satisfactory. They are known to grow

“garbage” when the compared patches are too small or

when the input texture is not stationary, or may lead to

verbatim copies of significant parts of the input sample

for large patches as can be verified in [1]. More recent

methods stitch together entire patches instead of per-

forming a synthesis pixel by pixel. The question then

is how to blend a new patch in the existing texture. In

[18] this is done by a smooth transition. Efros and Free-

man [6] refined this process by stitching each new patch

along a minimum cost path across its overlapping zone

with the texture under construction. Kwatra et al. in

[14] extended the stitching procedure of [6] by a graph

cut approach redefining the edges of the patches. In

[13] the authors propose to synthesize a texture image

by sequentially improving the quality of a synthesis by

minimizing a patch-based energy function. In the same

spirit as [13], where texture optimization is performed,

the authors in [16] propose to synthesize textures in

a multiscale framework using the coordinate maps of

the sample texture at different scales. They introduce

spatially randomness by applying a jitter function to

the coordinates at each level combined to a correction

step inspired by [2]. One of the key strengths of the

method is that it is a parallel synthesis algorithm which

makes it extremely fast. These non-parametric patch-

based approaches often present satisfactory visual re-

sults. In particular they have the ability to reproduce

highly structured textures. However, the risk remains

of copying verbatim large parts of the input sample.

Furthermore, a fidelity to the global statistics of the

initial sample is not guaranteed, in particular when the

texture sample is not stationary. We refer to [26] for

an extensive overview of the different non-parametric

patch-based methods.

Recently methods such as [20,25] combine patch-

based and statistics-based methods to overcome the

drawbacks mentioned previously. In [20], the author

proposes to use a patch-based approach where all the

patches of the synthesized image are created from a

sparse dictionary learnt on the input sample. In [25],

Tartavel et al. extend the work of [20] by minimizing

an energy that involves a sparse dictionary of patches

combined to constraints on the Fourier spectrum of the

input sample. Still more recently, Gatys et al. [10] have

introduced the neural network methodology into the

field. Extending the parametric approach, they char-

acterize a texture by the cross-correlations of kernels

learnt from a convolutional neural network dedicated

to shape recognition. This algorithm emulates complex

textures containing large objects for which the Portilla

and Simoncelli algorithm is not satisfactory. Contrar-

ily to the Portilla and Simoncelli approach, no Occam’s

razor was applied to reduce the number of texture pa-

rameters. The number of kernel correlations involved is

perhaps exceedingly large: it appears that parts of the

input are being recombined in the output. Nevertheless

this learning approach is definitely promising.

In this work, an extension and detailed description

of a texture synthesis framework is proposed which com-

bines a multiscale approach to a locally Gaussian tex-

ture model in the patch space. Each texture patch of

the synthesized image is sampled from its Gaussian dis-

tribution estimated on a set of similar patches taken in

the input sample as proposed in [22]. Modeling patches

with conditional Gaussian distributions is an approach

that is also used in image processing as for instance in

the denoising algorithm of Buades et al. [15]. The first

question that was brought up was how to stitch to-

gether the patches. In [22], the Efros and Freeman’s [6]

was adopted, where every new patch overlaps the pre-

viously synthesized one, and the overlapped parts are

blended. A more recent attempt considered conditional

Gaussian models [23] constraining the simulated Gaus-



A conditional multiscale L.G. texture synthesis algorithm 3

sian patches to respect the values of its overlapping

zone. This solution shows satisfying results for periodic

or pseudo-periodic textures but fails for more complex

ones. The second and central question brought up by

patch-based methods is: how to handle the strong de-

pendency of the method on the patch size in particu-

lar when dealing with macro-textures. Macro-textures

show information at different scales that cannot be cap-

tured with a unique patch size. To this aim, a multiscale

approach was sketched in [24] for which a full descrip-

tion and discussion is provided here.

The rest of this paper is structured as follows. In

Section 2 the local Gaussian (LG) model is described.

An analysis of the model’s variance is provided as well

as the description of a first synthesis method. In Section

3 two new patch models are introduced: the conditional

local Gaussian model (CLG) and the regularized condi-

tional local Gaussian model (RCLG). Section 4 presents

the multiscale approach (MSLG). Section 5 shows sev-

eral experiments: a comparison of the three patch mod-

els proposed, a comparison to the results of state of the

art texture synthesis methods and the influence of the

parameters involved in the multiscale texture synthesis

algorithm. Conclusions are presented in Section 6.

2 Gaussian patches

For all notations used in this section we refer to Table

1 for a detailed definition.

2.1 The assumption of a Gaussian patch model

For a given texture image u, the underlying distribu-

tion of every patch p
(x,y)
u is modeled as a multiriate

Gaussian distribution (LG) of mean µ(x,y) and covari-

ance matrix Σ(x,y). To validate this assumption a set of

overlapping patches of u are replaced by samples of the

corresponding distributions as explained in Algorithm

1. This set of patches covers the input texture u and for

the overlap regions no blending technique is used. Each

simulated patch overwrites the previous values along

the overlap area. The resulting image ũ is a plausible

reconstruction of u as can be observed in Figure 1.

The parameters µ(x,y) and Σ(x,y) of the Gaussian

distribution of the patch p
(x,y)
u are estimated from the

set of nearest patches U = {p(xi,yi)
u , i = 1, . . . ,m}. Here

p
(xi,yi)
u are them nearest patches to p

(x,y)
u in u according

to the L2 distance. The empirical statistics µ(x,y) and

Σ(x,y) are then defined as

input m = 10, n = 20 m = 10, n = 30

m = 20, n = 10 m = 20, n = 20 m = 20, n = 30

m = 30, n = 10 m = 30, n = 20 m = 30, n = 30

Fig. 1: Visual evaluation of the validity of a Gaussian

patch model. This experiment performs a Gaussian sub-

stitution for each patch of the left top corner texture

image (Algorithm 1). From left to right the patch size

is n = 10, 20, 30. From top to bottom the number of

nearest neighbours size is m = 10, 20, 30.

µ(x,y) = 1
m

∑m
i=1 p

(xi,yi)
u

Σ(x,y) =

∑m
i=1

∑m
j=1

(
p
(xi,yi)
u −µ(xi,yi)

)(
p
(xj,yj)
u −µ(xj,yj)

)t
(m−1) .

(1)

To simplify the notation, we denote by P the ma-

trix whose columns are the normalized patches in vec-

tor form (p
(xi,yi)
u − µ(x,y)), i = 1, . . . ,m. Then we can

reformulate the covariance matrix Σ(x,y)

Σ(x,y) =
1

(m− 1)
PP t.

Sampling a vector p̃
(x,y)
u ∼ N (µ(x,y), Σ(x,y)) comes down

to sampling m independent normal variables as

p̃(x,y)
u =

1

(m− 1)
PWDp′ + µ(x,y). (2)

Here p′ ∼ N (0, Im), W is a matrix whose columns are

the eigenvectors of P tP and D is a diagonal matrix

with its eigenvalues.

The result of using local Gaussian distributions is il-

lustrated in Figure 1. Observe that replacing the patches
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u Ω → R: input texture image defined on the discrete domain Ω = IM × IN of size M ×N where Ic denotes the
discrete interval [0, . . . , c− 1]

w Ωr → R: output texture image defined on the discrete domain Ωr = IrM × IrN of size rM × rN
d is equal to 1 if u is grayscale and to 3 for color images
r ratio (size of output image w)/(size of input image u)
n side patch size
m number of nearest neighbours used to learn the parameters of the Gaussian distribution
o overlap size
K number of scales (maximum factor of zoom out is K − 1)
uk Ωk → R: zoom out of u of a factor 2k, defined on the discrete domain Ωk = I2−kM × I2−kN of size

2−kM × 2−kN for k = 1 . . .K − 1
wk Ωkr → R: synthesized texture at scale k, defined on the discrete domain Ωkr = Ir2−kM × Ir2−kN of size

r2−kM × r2−kN for k = 0 . . .K − 1
vk Ωkr → R: zoom in of wk+1 of factor 2. It is the initialization of the low resolution of the synthesized image wk

for k = 0 . . .K − 2

p
(x,y)
u square patch of size n× n from an image u of size M ×N at position (x, y),

p
(x,y)
u = {u ((x, y) + (i, j)) , (i, j) ∈ [0, . . . , n− 1]2}, (x, y) ∈ Vu

where Vu = IM−n+1 × IN−n+1 denotes the discrete domain of the valid patches in the image u

p
(x,y)
u will be taken as a column vector of size dn2 × 1

Gσ Gaussian kernel of mean zero and standard deviation σ, Gσ(x, y) = 1
2πσ2 e

− x2+y2

2σ2

Luk Ωk → R: low resolution of image uk, Luk = uk ∗Gσ, k = 0 . . .K − 2
Huk Ωk → R: high resolution of image uk, Huk = uk − uk ∗Gσ, k = 0 . . .K − 2
Lwk Ωkr → R: low resolution of image wk, Lwk = wk ∗Gσ, k = 0 . . .K − 2
Hwk Ωkr → R: high resolution of image wk, Hwk = wk − wk ∗Gσ, k = 0 . . .K − 2

Table 1: Summary of the notations used in this article.

Algorithm 1 Gaussian model validation

Input: input texture sample u, side patch size n, number of
nearest neighbours m, overlap size o

Output: reconstructed texture ũ
1: for x = 1 : n− o : M do
2: for y = 1 : n− o : N do

3: Compute U the set of m closest patches to p
(x,y)
u

4: Estimate µ(x,y) and Σ(x,y)

5: Sample p̃
(x,y)
u ∼ N

(
µ(x,y), Σ(x,y)

)
6: ũ(x+ i, y + j)← p̃u(x, y), ∀(i, j) ∈ I2n
7: end for
8: end for
9: return ũ

of the texture by simulated ones with the correspond-

ing Gaussian model achieves a faithful random variant

of the original image for reasonable values of n and m.

All pixel values of u and ũ are actually different. For

large values of m the model no longer represents the

patch faithfully because U will contain outliers. Large

values of n limits m for the same reason. Nevertheless,

reasonable values of n and m ensure a correct recon-

struction when replacing patches by others simulated

from a Gaussian model.

To simplify the notations when referring to µ(x,y)

and Σ(x,y) they will be denoted by µ and Σ respectively.

The model’s variance It is important to analyze how

the variance of the Gaussian distribution varies with

the patch size n and the number of nearest neighbours

m used to estimate the Gaussian distributions. We ex-

pect to have a variance that is not equal to zero since

this would correspond to taking the best match in u and

thus having no innovation at all. On the other hand a

high variance would introduce too much variability and

therefore end up with a blurry reconstruction of the

texture. The ranges for m and n yielding a correct es-

timate for the variance cannot be determined a priori

and strongly depend on the texture sample. To mea-

sure the variability of the Gaussian model the mean

standard deviation per pixel of a given patch in the

texture image can be estimated by

σ̄ =
1

dn2

dn2∑
i=1

√
Σ(i, i) =

1

dn2

dn2∑
i=1

σi

where d is the number of channels(d=1 for grayscale

images and d = 3 fop color images).

In Figure 2, two texture examples are presented.

As expected for a fixed patch size n the mean standard

deviation per pixel σ̄ increases when using more patches

to estimate the Gaussian distribution. For a fixed value

of m the same behaviour is observed when increasing

n. The first example, a micro texture, shows that the

variance of the patch is not negligible even for m = 5.

Gaussian models are well suited for this kind of texture.

The second example, a periodic texture, shows that the

patch mean standard deviation varies between 8 and 18

for values of m ∈ {5, 10, 30, 50}. These are reasonable
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values confirming that effectively the patches simulated

have an acceptable degree of innovation.

2.2 Texture synthesis algorithm

In this section a texture synthesis algorithm is pre-

sented using the Gaussian sampling described in the

previous section. Given the input texture u, the output

image w is synthesized sequentially patch by patch in

a raster-scan order (left to right, top to bottom). Each

new patch added to w overlaps part of the previously

synthesized patch as can be seen in Figure 3. Depend-

ing on the stage of the synthesis three different cases

of overlap can be observed: vertical (first row of raster-

scan), horizontal (first column of raster-scan) and L-

shape (everywhere else). This is also shown in Figure 3.

Each patch is simulated following a multivariate Gaus-

sian distribution of mean µ and covariance matrix Σ as

defined in (1). When quilting the patch in w the same

stitching step is applied as in Efros and Freeman’s work

[6] where the authors propose to compute an optimal

boundary between the new patch and the previously

synthesized one along their overlap region. This is done

thanks to a linear programming optimization.

To define the set U = {p(xi,yi)
u , i = 1, . . . ,m} of

nearest patches to p
(x,y)
w , let us consider p

(x,y)
w as the

patch being currently synthesized and taken as a col-

umn vector of size dn2×1. The patch p
(x,y)
w will overlap

part of the previous synthesis. To synthesize p
(x,y)
w , we

decompose it as

p(x,y)
w = StSp(x,y)

w +RtRp(x,y)
w . (3)

Here, S : Rdn2 → Rdn2−k and R : Rdn2 → Rk are

projection operators such that Rp
(x,y)
w is a vector of

size k × 1 with the values of p
(x,y)
w on the overlap area

and Sp
(x,y)
w is a vector of size (dn2 − k) × 1 with the

other components of p
(x,y)
w . This decomposition will be

useful in the following section.

The patches p
(xi,yi)
u used to learn the parameters of

the multivariate Gaussian distribution (1) are the m

nearest neighbours in u to the current patch p
(x,y)
w , for

the L2 distance restricted to the overlap area, given by

‖Rp(xi,yi)
u −Rp(x,y)

w ‖2. Once the patch p
(x,y)
w is synthe-

sized from the Gaussian model (1), the values of Rp
(x,y)
w

change. The texture synthesis algorithm is summarized

in Algorithm 2.

In Figure 4 the synthesis results using the Gaussian

sampling are compared to those of the quilting method

[6] to illustrate that the Gaussian sampling achieves vi-

sual results that are comparable to those in [6] while

Algorithm 2 Texture Synthesis

Input: input texture sample u, side patch size n, overlap
size o, number of nearest neighbours m, ratio (output
size)/(input size) r

Output: synthesized texture w
1: Initialize w placing a seed patch in its top-left corner (x =

1, y = 1). The image w is of size rM × rN , where M ×N
is the size of u.

2: for x = 1 : n− o : rM do
3: for y = 1 : n− o : rN do
4: if (x > 1 or y > 1) then

5: U ← set of m nearest neighbours to p
(x,y)
w

6: (µ,Σ) ← Estimate the parameters of the multi-
avriate Gaussian distribution on U

7: Sample p̃
(x,y)
w ∼ G(µ,Σ)

8: Quilt p̃
(x,y)
w in w at position (x, y)

9: end if
10: end for
11: end for
12: return w

providing a local parametric model. With the Gaus-

sian sampling some blur is introduced in the synthesis

results but the effects of verbatim copies and garbage

growing are reduced as can be observed in the second

example in Figure 4. For a more extensive comparison

please we refer to [22] where the Gaussian sampling is

compared to several synthesis texture algorithms.

2.3 A discussion on the underlying mathematical

model

The underlying random field of a given input texture

is assumed to be a Gaussian random field. Indeed, as

illustrated with the experiment in Figure 1, a patch in

the input is assumed to be a multivariate Gaussian vec-

tor. Furthermore, we assume the existence of a set of

other patches following the same probability distribu-

tion, from which the parameters (mean and covariance

matrix) are estimated. Thus the resulting reconstructed

image is a sample of a Gaussian random field. Never-

theless, the same cannot be stated for the underlying

random field of the synthesized textures when using

Algorithm 2. These generated textures are not sam-

ples of a Gaussian random field. What can be affirmed

is that the conditional distribution of the patches are

Gaussian, meaning that if p0
w, p

1
w, p

2
w . . . are the over-

lapping patches of the image taken in a raster scan or-

der, then the conditional probability P(pnw|pn−1
w ) is a

Gaussian multivariate distribution. However, the mean

and the covariance matrix of this Gaussian distribution

are computed from patches similar to pn−1
w in the input

sample. Therefore the joint probability distribution of

the patches is not necessarily Gaussian.
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Fig. 2: Behaviour of the mean standard deviation of the patches as functions of the patch size n and the neigh-

bourhood size m. For each texture example two patches have been selected (left column). For each of them the

mean standard deviation is computed for several values of n ∈ {10, 20, 40, 80} and m ∈ {5, 10, 30, 50, 500, 1000}.
In the input image patch 1 is represented by a solid line and patch 2 by a dashed line.

Vertical overlap

Iteration 10

Horizontal overlap

Iteration 115

L-shape overlap

Iteration 239

Fig. 3: Three different iterations of the synthesis process

are shown. At each iteration a patch is being synthe-

sized. This patch is represented by the pink square in

the three iterations shown. From left to right the three

overlap cases are represented: vertical, horizontal and

L-shape.

Thus, while the algorithms are effective, they do not

imply so far the existence of a complete texture model.

Indeed, the input sample is characterized by a Gaus-

sian distribution for each patch but also by spreads,

defined as the spatial distribution of the patches be-

longing to the same Gaussian model. For some periodic

textures the spread is deterministic (like in a chessboard

for instance) but for general textures the spread itself

is random. To model the whole texture as a random

field a stochastic model for the spreads would there-

fore be necessary. For example, if the spread of the in-

put sample is given and the patches of the generated

texture are samples of conditional Gaussian distribu-

tions respecting exactly the same spread as the input’s,

then the underlying random field of the whole synthe-

sized texture is Gaussian (as in the example of Figure

1). Nevertheless, to synthesize textures this is not very

interesting in terms of variability among the different

sampled textures. Another meaningful example where

the model is complete is the case of periodic textures

where the spread is deterministic. For a fixed seed patch

(the one that initializes the generated texture) the un-

derlying random field of the generated textures is a pe-
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Input LG method [6]

Fig. 4: Comparison of LG to the quilting method [6]. These results are done taking equal parameters and seed

patch to initialize the synthesized imaged. The parameters used are n = 40, o = 0.5 and m = 30 (for the LG

model).

riodic Gaussian random field. But this is no longer the

case when the seed patch is random.

To summarize, we cannot claim that the proposed

synthesis algorithm corresponds to a complete texture

model, because it would require a stochastic model for

the spread, namely the spatial interaction between patches

obeying the same Gaussian model. This is left for future

investigation, perhaps in the spirit of [17].

3 Conditional Gaussian patches

The purpose of this section is to analyze how to re-

place the stitching step by a conditional patch model

on the overlapping zone. The natural idea is to condi-

tion the new Gaussian samples to the ones observed in

the overlap zone, thus allowing to maintain the same or

very only slightly the pixel in this overlap pixels.

This requires a new patch model to model the tran-

sition effect between patches. Each new patch will be

estimated as a Gaussian vector conditioned to the pixel

values of its corresponding overlap region. In this way

the simulated patch would naturally “agree” with w in

the overlap area, thus avoiding a stitching procedure.

Such models will be considered in the following sec-

tions.

3.1 Conditional Gaussian model

In this first pathc model the idea is to model sam-

ple patches from a Gaussian distribution that exactly

match with their overlap area pixels, avoiding the un-

wanted discontinuities. We shall call this model Condi-

tional Locally Gaussian (CLG).

Each patch p
(x,y)
w is taken as a column vector of size

dn2 × 1 and can be partitioned as expressed in (3).

We assume throughout that the vector p
(x,y)
w follows a

Gaussian distribution of mean µ and covariance matrix

Σ. These parameters can be expressed as follows :
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µ =StSµ+RtRµ = Stµ1 +Rtµ2

and

Σ =StSΣStS+StSΣRtR+RtRΣStS+RtRΣRtR

=StΣ1,1S+StΣ1,2R+RtΣ2,1R+RtΣ2,2R.

The problem can be formulated as finding the “best

sample” p̃ = (p̃1, p̃2) conditioned to the overlap values

y0 that are known,

p̃1 = arg max
p1

Pµ,Σ(P1 = p1 | P2 = y0). (4)

Here P1 corresponds to the unknown values of p
(x,y)
w

and P2 to the values of p
(x,y)
w on the overlap area, i.e.

P1 = Sp
(x,y)
w and P2 = Rp

(x,y)
w .

Using classic results on conditional multivariate Gaus-

sian distributions [19], the distribution of P1 condi-

tioned to P2 = y0 is a multivariate Gaussian distri-

bution of parameters µ̄ and Σ̄ where

µ̄ = µ1 + (SΣRt)(RΣRt)−1(y0 − µ2)

and

Σ̄ = (SΣSt)− SΣRt(RΣRt)−1RΣSt.

Since the most probable sample of a multivariate Gaus-

sian distribution is its mean, the solution to (4) is

p̃w = Rty0 + St(µ1 + (SΣRt)(RΣRt)−1(y0 − µ2)). (5)

This first result has the advantage that since the

mean of the conditional distribution is taken, the risk

of unwanted sharp transition between patches for some

types of textures will be attenuated. Another observa-

tion is that since this new model might not have very

probable samples, working with the most probable one

improves the visual aspect of the sampled patch. The

negative aspects of taking the most probable sample is

that on the one hand the result, for a given initializa-

tion, is deterministic. On the other hand the synthesis

result loses resolution by displaying the mean of the

conditional distribution.

An alternative to overcome these two drawbacks is

to sample a patch from the underlying Gaussian distri-

bution, that is,

p̃ = Rty0 + Stp̃1, p̃1 ∼ N (µ̄, Σ̄). (6)

Yet equations (5) and (6) show that these solutions

do not make sense if (RΣRt) is not invertible. This un-

fortunately is frequent, as the number of neighbours m

used to build the Gaussian distribution is often very

small compared to the dimension of the vectors we aim

to model. Therefore the learnt Gaussian models are

strongly degenerated.

The fact that Σ is not invertible implies that the Gaus-

sian vectors p
(x,y)
w ∼ N (µ,Σ) live in a subspace of Rdn2

.

This leads to the following alternatives:

1. The Gaussian vectors subspace intersects the set of

Gaussian vectors Rty0 + Stp1. Thus the Gaussian

distribution N (µ̄, Σ̄) exists and there is a solution

to our problem.

2. There is no intersection and in that case there is no

solution.

To overcome the fact that we may have no solution a

small perturbation is added to the Gaussian distribu-

tion learnt for p
(x,y)
w as follows

p(x,y)
w ∼ N (µ,Σ + σ2Idn2),

where σ2 is a real positive number and Idn2 is the

identity matrix of size dn2 × dn2 ensuring that the

problem is well conditioned. In that way the Gaussian

vectors p
(x,y)
w live in Rdn2

, and this ensures the exis-

tence of the conditional multivariate Gaussian distri-

bution sought. The new covariance matrix is denoted

by Γ = Σ + σ2Idn2 .

If we are in the case where the Gaussian vectors

subspace p
(x,y)
w ∼ N (µ,Σ) intersects the set of Gaus-

sian vectors Rty0 + Stp1, using the new distribution

N (µ, Γ ) will slightly modify the solutions in (5) and

(6) when using small values of σ2. Thus it is enough to

take a low value for σ2 and the solutions obtained in

both cases (N (µ,Σ) and N (µ, Γ )) will be very close to

each other.

Adding this perturbation to the multivariate Gaus-

sian model has the drawback of increasing the compu-

tational cost of sampling a Gaussian vector. For the

model in Section 2.1 a Gaussian vector was sampled

computing the eigenvectors and eigenvalues of an m×m
matrix. The model presented in this section requires the

computation of the eigenvectors and eigenvalues of an

dn2 × dn2 matrix.

3.2 Regularized conditional Gaussian model

In the previous section the patches’ statistical model

was conditioned to the exact values of the synthesized

pixels across the overlap area. This is too restrictive for

some types of textures and is at risk of creating un-

likely samples. Instead of forcing each patch p
(x,y)
w to

take the exact same values on the previously synthe-

sized part, it is therefore natural to allow the patch to
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vary slightly on the overlap area. This variation is ren-

dered necessary by the scarcity of patch samples in a

small texture sample. We shall call this model Regular-

ized Conditional Locally Gaussian (RCLG). Consider

the same patch model N (µ,Σ), but let us now allow

the overlap components P2 = Rp
(x,y)
w to take values

P2 = y0 + n, where n ∼ N (0, θ2Ik) and where θ is the

degree of variation allowed for the overlap values. The

joint distribution of (P1, P2) is defined by:

P(p1, p2) =Pµ,Σ(p1|p2)Py0,θ2Ik(p2)

=κe−
1
2 ((p1,p2)−(µ̄,y0))t∆−1((p1,p2)−(µ̄,y0)), (7)

where κ = 1√
2π|∆|

and ∆ =

(
Σ̄ 0

0 σ2Ik×k

)
.

Proceeding as in the previous model (CLG) the most

probable sample defined by (8) is exactly the same as

in (5) and has the same drawbacks. On the other hand

sampling from (7) allows to relax the overlap constraint.

p̃ =(p̃1, p̃2)

= arg max
(p1,p2)

Pµ,Σ(P1 = p1|P2 = p2)P0,θ2Ik(p2 − y0)

(8)

Once again, to guarantee the existence of the solu-

tion, the Gaussian distribution of p
(x,y)
w is slightly mod-

ified as done in the CLG model. A small perturbation

is added to the covariance matrix Σ and the problem is

then well conditioned. Thus, as in the CLG model, the

computational cost of sampling from this new Gaussian

distribution is higher compared to the LG sampling.

4 A multiscale algorithm

For all notations used in this section we refer to Table

1 for a detailed definition.

Macro textures present details at different scales: a

coarse one that contains the global structure of the tex-

ture and finer ones containing the details. Small patch

sizes may capture the finer details of the input but

the resulting texture will lack global coherence. On the

other hand using large patches will maintain better the

global structures on the risk of a “copy-paste” effect.

Furthermore with large patches it becomes impossible

to model the patch variability due to the curse of di-

mensionality, in other terms the lack of sufficient sam-

ples. This is for example apparent in [22] where model-

ing patches as multivariate Gaussian vectors leads to a

slightly blurry texture.

Multiscale approaches permit to contemplate sev-

eral patch sizes within one synthesis, i.e. to capture the

different levels of details. If we fix the patch size to be

n × n and use K scales this is similar to using K dif-

ferent patch sizes going from 2K−1n× 2K−1n to n× n
for the coarsest to finer details within one synthesis.

In this section the potential of a multiscale approach

is illustrated by improving the method described in Al-

gorithm 2. Let us first introduce some notations. The

input texture sample is denoted by u and uk, k =

1, . . . ,K − 1 are the zoomed out versions of u by a

factor 2k, k = 1, . . . ,K − 1. The synthesis result at

each scale is denoted by wk, k = 1, . . . ,K − 1 and w

is the synthesis result returned by the multiscales al-

gorithm. An additional image needed at each scale is

the low resolution of the result wk that is denoted by

vk and its the result of zooming in wk+1. The multi-

scale approach can be summarized in a few sentences.

The method begins by a synthesis at the coarsest scale

(k = K − 1) using the local Gaussian method in Algo-

rithm 2 where the quilting step is replaced by a simple

average of the overlapping patches. For the remaining

scales (k = K−2, . . . , 0) a synthesis is performed by us-

ing the result of the previous scale (k+1) and the input

of corresponding resolution. At each scale the synthesis

is done patch by patch in a raster-scan order. Each new

patch, added to the synthesized image, overlaps part of

the previously synthesized patch and is the combina-

tion of a low resolution patch and a high resolution one

sampled from a multivariate Gaussian distribution. The

Gaussian distribution of the high frequencies of a given

patch is estimated from the high frequencies of its m

nearest neighbours in the corresponding scale input im-

age. The synthesis result of the finer scale is the desired

output image.

We shall call this method Multiscale Locally Gaus-

sian (MSLG). In the following the different parts of the

method described in Algorithm 3 are detailed.

Zoom out The zoom out operation is a Gaussian zoom

out. It is performed as a smooth frequency cutoff fol-

lowed by a sub-sampling of factor 2. These operations

are detailed below in (9), (10) and (11).

The smooth frequency cutoff is performed with the

Gaussian kernel

Gσ(x, y) =
1

σ22π
e−

x2+y2

2σ2 , (9)

where we chose σ = 1.4.

The sub-sampling operation by a factor 2 applied to an

image u : IM × IN 7→ R is defined by

S2 : IM × IN 7→ IM/2 × IN/2,
S2(u)(i, j) = u(2i, 2j), (i, j) ∈ IM/2 × IN/2. (10)
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The zoom out of an image u of factor 2 is then

Zout
2 (u) = S2(u ∗Gσ). (11)

The images obtained after applying this zoom out

operation have no aliasing or ringing artifacts and they

are blurry enough to avoid ringing artifacts when ap-

plying the zero padding zoom in.

Zoom in For an image u : IM × IN → R, v = Z in
2 (u) :

I2M×I2N → R is the zoom in by a factor 2. This opera-

tion is performed by a zero padding of û : Î2M × Î2N →
C where û denotes the discrete Fourier transform of u

and Îc denotes the discrete interval [−c/2, . . . , c/2− 1]

for c even and [−(c−1)/2, . . . , (c−1)/2] for c odd. This

is done as

v̂(ξ1, ξ2) =

{
û(ξ1, ξ2) if |ξ1| ≤

⌊
M−1

2

⌋
, |ξ2| ≤

⌊
N−1

2

⌋
0 else

(12)

where v̂ is the discrete Fourier transform of v and bxc
denotes the integer part of x.

The relation between the zoom in and zoom out

operators

Z in
2 (Zout

2 (u)) = u

is valid when the image u verifies

û(ξ1, ξ2) = 0, ∀|ξ1| >
⌊
M − 1

2

⌋
, |ξ2| >

⌊
N − 1

2

⌋
.

We could have chosen other interpolation techniques

as for example a spline interpolation. But a zero padding

is well suited due to the nature of the zoomed out im-

ages which are blurry enough to avoid any ringing ar-

tifacts.

Distance between patches To estimate the parameters

of the Gaussian distribution of the patch being pro-

cessed, denoted by p
(x′,y′)
wk , the set U ofm nearest patches

in uk to p
(x′,y′)
wk is considered. These patches are those

minimizing the distance to p
(x′,y′)
wk defined in (13) for

k = K − 1 and in (14) for the remaining scales k =

K − 2, . . . , 0.

The size of patch overlap is fixed to half the patch

size n/2. As mentioned in Section 2 there are three

overlap cases: vertical (V.O.), horizontal (H.O.) and L-

shape (L.O.). Here they are denoted as

Op(x,y)
u = {u ((x, y) + (i, j)) , (i, j) ∈ O}

where

O =


[0, . . . , n− 1]×

[
0, . . . , n2 − 1

]
if V.O.[

0, . . . , n2 − 1
]
× [0, . . . , n− 1] if H.O.[

0, . . . , n2 − 1
]
× [0, . . . , n− 1]∪[

n
2 , . . . , n− 1

]
×
[
0, . . . , n2 − 1

]
if L.O.

When k = K−1, the m nearest neighbours in uK−1

to the current patch p
(x′,y′)
wK−1 are those minimizing the L2

distance restricted to the overlap area:

d(Op(x,y)
uK−1

, Op(x′,y′)
wK−1

)2 =

1

|O|
∑

(i,j)∈O

(uK−1(x+ i, y + j)− wK−1(x′ + i, y′ + j))2.

(13)

When k = K − 2, . . . , 0, the nearest neighbours in

uk to the patch p
(x′,y′)
wk are those minimizing a distance

(14) similar to (13) with an additional term taking into

account the low resolution vk (the synthesis result of the

previous scale k+ 1). In (14) Luk denotes the low reso-

lution of the image uk, Luk = uk∗Gσ, k = 0, . . . ,K−2.

Is is important to notice that when comparing Op
(x,y)
uk

and Op
(x′,y′)
wk the low and the high resolution must be

considered jointly, they are not independent.

d(p(x,y)
uk

, p(x′,y′)
wk

)2 =

1

|O|
∑

(i,j)∈O

(uk(x+ i, y + j)− wk(x′ + i, y′ + j))2

+
1

n2

n−1∑
i,j=0

(Luk(x+ i, y + j)− vk(x′ + i, y′ + j))2 (14)

Blending process The blending process consists in sim-

ply averaging the values across the overlap area as in

(15). This step is applied only for the synthesis of scale

k = K − 1.

wk(x+ i, y + j) ={
1
2 (p̃

(x,y)
wK−1(i, j) + p

(x,y)
wK−1(i, j)) if (i, j) ∈ O

p̃
(x,y)
wK−1(i, j) if (i, j) ∈ I2

n −O
(15)

Synthesizing patches at scales k = K−2, . . . , 0 At each

scale k a patch p
(x,y)
wk is synthesized as the combination

of a low resolution patch with a high resolution one. It

can be decomposed as
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p(x,y)
wk

= p
(x,y)
wk∗Gσ + (p(x,y)

wk
− p(x,y)

wk∗Gσ )

= p(x,y)
vk

+ (p(x,y)
wk

− p(x,y)
vk

)

= p
(x,y)
Lwk

+ p
(x,y)
Hwk

.

Here Lwkdenotes the low resolution image of wk de-

fined as Lwk = wk ∗ Gσ, k = 0 . . .K − 2 and Hwk de-

notes the high resolution image of wk defined as Hwk =

wk − wk ∗ Gσ, k = 0 . . .K − 2. The set U defines

the Gaussian distribution of p
(x,y)
Lwk

∼ N (µL, ΣL) and

p
(x,y)
Hwk

∼ N (µH , ΣH) and therefore the distribution of

the patch p
(x,y)
wk ∼ N (µ,Σ) where

µ = µH + µL

and

Σ = ΣL +ΣH + E(p
(x,y)
Lwk

(p
(x,y)
Hwk

)t) + E(p
(x,y)
Hwk

(p
(x,y)
Lwk

)t).

Instead of sampling p
(x,y)
Lwk

from its Gaussian distribu-

tion, p
(x,y)
vk ∼ N (µL, ΣL) is kept to conserve the low

resolution synthesis from the previous scale. The high

frequency patch p
(x,y)
Hwk

is sampled form N (µH , ΣH) and

then added to p
(x,y)
vk . In this way the correlations be-

tween high and low resolution pixels are respected, us-

ing the low resolution synthesis vk as initialization.

For all scales beside the coarsest one the synthesis

is done by adding the high frequencies of the corre-

sponding scale on the the low resolution basis image.

It is the important to achieve a correct basis image in

the coarsest scale on which the high frequencies will be

added. The texture synthesis method is summarized in

Algorithm 3.

5 Experiments

In this section, texture synthesis results are shown us-

ing the algorithm described in Algorithm 3. In Figure

5, general results of the multiscale method are shown

with success and failure cases. In Figure 8 several tex-

ture synthesis methods are compared. In Figure 7 the

innovation capacity of our method is compared to [6]

using coordinate maps. In Figure 6 the patch models

introduced in Section 2 and 3 are compared. Finally

the influence of the parameters is discussed in Figure

10. There are four of them: the patch size n, the num-

ber of neighbours m, the overlap size o and the number

of scales K used in the multiscale approach. This is

illustrated with two texture examples.

Algorithm 3 Multiscale texture syntesis

Input: input texture sample u, side patch size n, number of
nearest neighbours m, number of scales K, ratio (output
size)/(input size) r

Output: synthesized texture w
1: Define uk ← Zout

2 (uk−1), k = 1 . . .K − 1
2: Define Luk ← uk ∗Gσ, k = 0 . . .K − 2
3: Synthesize wK−1 ← Synth0(uK−1, n,m, r)
4: for k = K − 2 : 0 do
5: vk ← Zin

2 (wk+1)
6: Initialize wk with zeros of same size as vk
7: for x = 1 : n/2 : (r2−kM − n+ 1) do
8: for y = 1 : n/2 : (r2−kN − n+ 1) do

9: Compute d(p
(x′,y′)
uk , p

(x,y)
wk ), for all (x′, y′) in Vuk

10: U ← {p(xi,yi)uk , i = 1, . . . ,m} set of m nearest

patches in uk that minimize d(p
(x′,y′)
uk , p

(x,y)
wk )

11: H ← {p(x,y)uk − p(x,y)uk ∗ Gσ, ∀p(x,y)uk ∈ U}, high
frequency of the corresponding patches in U

12: Learn (µ,Σ) the parameters of the multivariate
Gaussian distribution on the patches of H

13: Sample p̃ ∼ G(µ,Σ)

14: p̃
(x,y)
wk ← p

(x,y)
vk + p̃

15: wk((x, y) + (i, j))← p̃
(x,y)
wk for (i, j) in I2n

16: end for
17: end for
18: end for
19: return w

In general the results shown in Figure 5 are satisfy-

ing for a wide range of textures. The global structures

are reproduced by the multiscale approach, while the

local structures are maintained by the patch based ap-

proach. Using a Gaussian patch model allows to cre-

ate new patches that do not exist in the input example

while maintaining satisfying visual results. Based on the

analysis of the patch’s variance illustrated in Section 2

this guarantees that indeed the simulated patches are

sufficiently different from the ones in the input sample.

The examples of the last two rows illustrate some failure

cases of the method. The main failure cause is the size

of the input texture. It is obvious that the input must

be large enough to provide us with a sufficient number

of patch samples to estimate their distribution. If that

is not the case, even though the patches are pixel-wise

different of the input ones the visual aspect may remain

too similar and cause a “copy-paste” effect when m is

small enough. Furthermore, as in other non parametric

methods,“garbage”, namely the excessive use of a sub-

set of patches in the input image is not fully avoided.

This effect is nevertheless mitigated by the multiscale

approach.

5.1 Model comparison

The results in Figure 6 show the effects of avoiding the

use of the blending step in Algorithm 2. The three mod-
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Fig. 5: Synthesis results of the multiscale algorithm. The small images correspond to the texture samples and the

big ones are the corresponding synthesis results. The parameters used for all examples are n = 20, m = 20 and

K = 2.

els LG, CLG and RCLG were tested on several types

of textures. For the three of them the quilting step was

omitted. This was done to achieve a better comparison

of the capacity of respecting the overlap by modeling or

not the restriction of the patches to the overlap values.

The results are compared for the three models applied

in the sampling mode. The results of the same models in

the best sample patch mode are less interesting and are

not shown here. The general conclusion of the results in

Figure 6 is that the conditional patch models achieve a

better transition between patches on their overlap re-

gion, as expected. Nevertheless the results for CLG and
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RCLG both loose some resolution compared to the LG

results. One can observe in Figure 6 that blur appears

progressively in the raster-scan order of the synthesis

algorithm. Indeed, when moving forward in the synthe-

sis the m nearest patches start being too different from

each other (due to the strong restriction of keeping the

values of the overlap) and the result is a much blur-

rier patch. The first five texture examples in Figure 6

show better stitching results for CLG and RCLG than

for to LG. Looking carefully at the synthesis results of

the LG model the edges between patches are more no-

ticeable than in the other two models where almost no

transition effect can be seen. Nevertheless the loss of

resolution caused by the Gaussian distributions is in-

creased in both conditional models, mostly for CLG.

In the last row example the results are less convinc-

ing. There are not enough reliable samples to estimate

a correct conditional model. The visual results of CLG

and RCLG get more and more degraded in the order of

the raster scan. This is not surprising since the sample

patches respecting the overlap values become increas-

ingly unlikely.

From the experiments in Figure 6 one can conclude

that a quilting technique is still needed for complex

textures and therefore the LG model is better to model

locally the texture input. It generates less blur in the

results and has a significant smaller computational cost.

In the rest of the experiments only the LG model in

considered. Nevertheless it could be interesting to test

the use of conditional models in the multiscale version

at the coarsest scale.

In Figure 7 the LG model is compared to the MSLG

model. One can observe the strength of using the multi-

scale approach in terms of reproducing global arrange-

ments that are not kept in the LG model for a fixed

patch size. This allows to obtain satisfying results for

small values of n and therefore gives more freedom to

choose the number of nearest patches m. One can also

conclude from the experiments in Figure 7 that the mul-

tiscale approach generates blurrier textures than the

LG model.

5.2 Comparison to other texture synthesis methods

In this section the results of Algorithm 3 are compared

to other synthesis methods such as [21,25,6]. In gen-

eral, the results obtained with the multiscale locally

Gaussian method are visually comparable to the non-

parametric patch based method of Efros and Freeman

[6], with the advantage that now, the patches are being

sampled from their Gaussian model and therefore are

different. In Figure 8, the first column shows the re-

sult of the proposed method. A noticeable drawback of

the method is the loss for resolution caused by the use

of Gaussian distributions. The proposed method was

therefore combined with the Portilla and Simoncelli’s

algorithm [21] as a first and simple approach to over-

come this loss of resolution. The result can be seen in

the second column of Figure 8. The result of combining

both algorithms is very satisfying. On the one hand the

local and global structures are kept due to use of the

patch based and multiscale method. On the other hand

[21] allows to respect the global statistics of the input or

at least be quite close to them. Comparing columns one

and two to the third one shows how the combination of

both methods improves the results of each method used

separately. Of course this solution is limited in particu-

lar when the size of the synthesized image is too large.

The fourth column shows the results of the Tartavel et

al. method [25]. It is interesting to compare our results

to this method since both approaches are multiscale,

patch based, and create systematically new patches.

The results for organized highly structured textures are

comparable for both cases. Nevertheless for more com-

plex textures like the flower example and the last two

rows one notices a lack of sharpness when recreating the

salient objects of the input with the method in [25].

Finally the last column shows results of [6]. One can

observe that for MSLG the visual results are in gen-

eral comparable to those of [6] while providing a local

parametric model. The results of [6] are obviously ex-

cellent. But once again, in this kind of method, the al-

gorithm ends up copying very large parts of the input.

To illustrate this we represent our synthesis results and

the ones obtained with [6] using position and synthesis

maps as can be seen in Figure 9. Each pixel position

(x, y) in the sample texture u is associated to a dif-

ferent color from a continuous colormap. The resulting

image is called the position map. The synthesis map

associated to the synthesized texture w is obtained by

mapping each of its positions (x′, y′) to the color value

of the corresponding position (x, y) of u. This position

(x, y) corresponds to the central pixel of the nearest

patch in u to the patch centered in (x′, y′) in w. The

synthesis map will allow to identify the tendency of an

algorithm to generate verbatim copies and to visualize

from which regions of the input texture are sampled the

patches. To compute these synthesis maps we used the

PatchMatch algorithm [3] an efficient algorithm to ap-

proximate optimal correspondences. We used the imple-

mentation provided in [7]. In Figure 9 one can observe

that in general the synthesis maps associated to the re-

sults of MSLG are more “noisy” than those associated

to the results of [6]. Also in the synthesis maps associ-

ated to [6] larger continuous zones are identified. This

corresponds to the verbatim copies produced by the
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Input LG model CLG model RCLG model

Fig. 6: Patch model comparison. From left to right: texture sample, synthesis result using LG model, CLG model

and RCLG model. No quilting technique was applied to stitch together the simulated patches for the three presented

models. The parameters used for all examples are n = 40, m = 30 and o = 0.5.
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Input LG model MSLG model

Fig. 7: Comparison of LG to MSLG. From left to right: texture sample, synthesis result using LG model, and

MSLG model. The parameters used for these examples are n = 20, m = 50 and o = 0.5. For the multiscale

synthesis results the number of scales K used is K = 3. For both methods we used the same seed patch for each

texture sample.
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method. It is important to notice, that in both cases,

for some texture examples in the synthesis maps there

are some dominant colors represented in the synthesis

maps. That reflects the discussion of Section 2.3 where

we said that the spread of the input sample is not be

respected. For example, in row number five of Figure

9, the input sample is not stationary (change of lumi-

nosity). Both methods fail in reproducing this. They

tend to stay in one region (the darker one in this par-

ticular case) and may lead to garbage growing. This is

well represented with the synthesis maps where green is

dominant for the example in row number five. Combin-

ing MSLG to [21] used as post-processing significantly

reduces this effect, although [21] has its own limitations.

5.3 Influence of the parameters

In Figure 10 and 11 the influence of the parameters is

discussed. There are four of them: the patch size n ∈
{10, 20, 40}, the number of neighbours m ∈ {10, 30, 50},
the overlap size o ∈ {0.25, 0.5} and the number of scales

used K ∈ {1, 2, 3}.

Influence of the patch size The synthesis results are

very sensitive to the patch size, in particular for macro

textures that have details at different scales. Figure 10

clearly shows that if the patch size is too small then

the synthesis will fail. Using the multiscale approach

strongly reduces the dependency of the method to the

patch size. For all examples shown in this paper, the

multiscale method using patches of 20 × 20 pixels was

enough to guarantee correct synthesis results. For the

one scale version the patch size used should have been

much larger to produce convenient results, on the cost

of reducing the variability of the Gaussian models and

even creating verbatim copy effects.

Influence of the number of neighbours This parameter

corresponds to the number of patches used to estimate

the patches’ Gaussian distribution. As has been dis-

cussed in Section 2 the value of m in general should not

be too small (> 5) or too large (< 50) to avoid patches

of variance null or too big. These values are not general

for all textures. The choice of m is linked to the amount

of self similarity in the image. Thus when m is too large

the Gaussian sampling will blur up the image. In the

experience of Figure 10 you can see that when m = 150

this leads to a texture which is too regular compared to

the input sample. Otherwise since the sample texture

in Figure 10 has many self similar patches the value of

m can be large enough. The choice of m is a compro-

mise between a copy-paste strategy and a risk of blurry

reconstruction of the texture.

Influence of the overlap size For the nearest patches

only the overlap areas are compared. This implies that

the variance of the model estimated on that set of patches

will be controlled only on the overlap region, thus allow-

ing more variety in the remaining pixels of the patch.

If that region is not big enough then the complemen-

tary region of the overlap will not be correctly modeled,

since outliers can be considered in the set of patches.

In Figure 10 two overlap cases are considered: a quar-

ter of the patch side and half the side patch size. This

influence is more noticeable in the columns for n = 20

and n = 40.

Influence of the multiscale process In Figure 11 the re-

sults show that using a single scale for a fixed patch size

is not enough to reproduce faithfully the global struc-

ture of the input sample for the three texture examples.

To achieve satisfying results for a single scale a larger

side patch size should be considered. Still this would

lead to the limitations mentioned previously. Further-

more when the number of scales is increased the global

arrangements are recovered as expected. That can be

checked in the three examples of Figure 11. They also

put in evidence how using a simple average of the values

along the overlap area of the coarsest scale is sufficient

to deal with the overlapping patches. More complex

quilting techniques are then avoided. The multiscale al-

gorithm will help a better respect of the spread (but it’s

not a guarantee).

6 Conclusion

In this work, a local texture sampling method in the
patch space using conditional Gaussian models was pro-

posed. The motivation was to dispose of a patch stitch-

ing step by using a more robust local model for the

texture. The Gaussian distribution of a patch was then

conditioned to the values of its overlapping region. Two

approaches were considered: CLG and RCLG models,

and were compared to the local Gaussian model (LG).

The results show that avoiding the stitching step is pos-

sible when dealing with periodic and pseudo-periodic

textures. For more complex textures the conditional

models are less performing and are fast limited by the

size of the texture input sample. In general, the synthe-

sis results using the conditional models were slightly

smoother than the ones of the LG model.

The second contribution of this paper was a multi-

scale texture synthesis algorithm using local Gaussian

models (LG). In general, the experiments showed sat-

isfying results for a wide variety of texture samples.

This is due to the patch based approach that conserves

the local structures while sampling each patch from its
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Input MSLG MSLG+[21] [21] [25] [6]

Fig. 8: Comparison to several texture synthesis algorithms. From left to right: input sample, MSLG, MSLG com-

bined to Portilla and Simoncelli [21], Portilla and Simoncelli[21], Tartavel et al. [25] (source: http://perso.

telecom-paristech.fr/~tartavel/research/jmiv14.php) and Efros and Freeman [6]. For MSLG the parame-

ters used are n = 20, m = 20 and K = 2. For [21] four scales and orientations were used. For [25] the patch size is

12 and the number of scales 3. For [6] the patch size used is 20.
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Input Pmap MSLG Smap [6] Smap

Fig. 9: Innovation capacity. From left to right: input sample, associated position map (Pmap), results of MSLG,

associated synthesis map (Smap), results of [6] and associated synthesis map (Smap). The results of MSLG and

[6] presented in this image are the same as the ones showed in Figure 8. The results are represented here with

their corresponding synthesis map to illustrate the capacity of innovation of both methods. The synthesis maps

show the regions from which the patch were sampled to generate the new texture image. Verbatim copy zones can

be detected where continuous color zones in the synthesis maps are visible as well as unvisited zones of the input

when the synthesis maps show dominant colors.
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input Overlap 0.25 Overlap 0.50

m = 10, n = 10 m = 10, n = 20 m = 10, n = 40

m = 50, n = 10 m = 50, n = 20 m = 50, n = 40

m = 150, n = 10 m = 150, n = 20 m = 150, n = 40

m = 10, n = 10 m = 10, n = 20 m = 10, n = 40

m = 50, n = 10 m = 50, n = 20 m = 50, n = 40

m = 150, n = 10 m = 150, n = 20 m = 150, n = 40

Fig. 10: Influence of the choice of the patch size, number of nearest neighbours and overlap size. For a given

texture example several synthesis results are shown for different sets of parameters. Two columns of 3× 3 results

are presented. The left column corresponds to an overlap size o = 0.25 × n and the right column to an overlap

size o = 0.5 × n. For each column of 3 × 3, from top to bottom the number of nearest neighbours m takes the

values 10, 50, 150. From left to right the patch size n takes the values 10, 20, 40. These results clearly show that

for a fixed value of n and m using an overlap size o = 0.25× n is not enough to determine a correct set of nearest

neighbours. For a fixed patch size, for example (n = 40, o = 0.5× n) one can observe that increasing the value of

m smoothes the synthesis result.

Gaussian distribution, thus creating new patches that

do not exist in the input sample. On the other hand the

multiscale approach permits to synthesize the global

arrangement of the salient structures of the input sam-

ple. The experiments also put in evidence that the use

of Gaussian distributions, for some texture examples,

have a tendency to slightly smooth the result compared

to the initial resolution of the sample. To overcome this

effect the method was combined to Portilla and Simon-

celli’s algorithm [21] as a first solution.

Several aspects of this method are still open to elu-

cidation, such as the way patches are compared, the

adaptation of the number of neighbours to the patch

being modeled and the conservation of the texture’s

global statistics.

Acknowledgements Work partly founded by the European
Research Council (advanced grant Twelve Labours) and the
Office of Naval research (ONR grant N00014-14-1-0023).

References

1. Aguerrebere, C., Gousseau, Y., Tartavel, G.: Exemplar-
based texture synthesis: the efros-leung algorithm. Image
Processing On Line 2013, 213–231 (2013)

2. Ashikhmin, M.: Synthesizing natural textures. In: Pro-
ceedings of the 2001 symposium on Interactive 3D graph-
ics, pp. 217–226. ACM (2001)

3. Barnes, C., Shechtman, E., Finkelstein, A., Goldman,
D.: Patchmatch: A randomized correspondence algorithm
for structural image editing. ACM Transactions on
Graphics-TOG 28(3), 24 (2009)

4. Briand, T., Vacher, J., Galerne, B., Rabin, J.: The heeger
& bergen pyramid based texture synthesis algorithm. Im-
age Processing On Line 4, 276–299 (2014)

5. Efros, A., Leung, T.K., et al.: Texture synthesis by non-
parametric sampling. In: Computer Vision, 1999. The
Proceedings of the Seventh IEEE International Confer-
ence on, vol. 2, pp. 1033–1038. IEEE (1999)

6. Efros, A.A., Freeman, W.T.: Image quilting for texture
synthesis and transfer. In: Proceedings of the 28th an-
nual conference on Computer graphics and interactive
techniques, pp. 341–346. ACM (2001)

7. Fedorov, V., Facciolo, G., Arias, P.: Variational Frame-
work for Non-Local Inpainting. Image Processing On
Line 5, 362–386 (2015). DOI 10.5201/ipol.2015.136

8. Galerne, B., Gousseau, Y., Morel, J.M.: Micro-texture
synthesis by phase randomization. Image Processing On
Line 2011 (2011)

9. Galerne, B., Gousseau, Y., Morel, J.M.: Random phase
textures: Theory and synthesis. Image Processing, IEEE
Transactions on 20(1), 257–267 (2011)

10. Gatys, L.A., Ecker, A.S., Bethge, M.: Texture syn-
thesis and the controlled generation of natural stim-
uli using convolutional neural networks. arXiv preprint
arXiv:1505.07376 (2015)

11. Heeger, D.J., Bergen, J.R.: Pyramid-based texture anal-
ysis/synthesis. In: Proceedings of the 22nd annual con-
ference on Computer graphics and interactive techniques,
pp. 229–238. ACM (1995)

12. Julesz, B.: Visual pattern discrimination. Information
Theory, IRE Transactions on 8(2), 84–92 (1962)



20 L. Raad, A. Desolneux, J.-M. Morel

Input K = 1 K = 2 K = 3

Fig. 11: Multiscale influence. For each row from left to right: input sample, three synthesis results for K = 1, 2, 3

scales. For the three texture examples from top to bottom the parameters used were (n = 10,m = 20), (n =

20,m = 20), (n = 20,m = 30). In the three examples the global arrangement for K = 1 is not respected while for

K = 2 and K = 3 are correctly synthesized.

13. Kwatra, V., Essa, I., Bobick, A., Kwatra, N.: Texture op-
timization for example-based synthesis. In: ACM Trans-
actions on Graphics (TOG), vol. 24, pp. 795–802. ACM
(2005)
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