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Abstract. Usually, image registration and abnormality detection (e.g.
lesions) in mammography are solved separately, although the solutions
of these problems are strongly dependent. In this paper, we introduce
a Bayesian approach to simultaneously register images and detect ab-
normalities. The key idea is to assume that pixels can be divided into
two classes: normal tissue and abnormalities. We define the registration
constraints as a mixture of two distributions which describe statistically
image gray-level variations for both pixel classes. These mixture distri-
butions are weighted by a map giving probabilities of abnormalities to
be present at each pixel position. Using the Maximum A Posteriori, we
estimate the deformation and the abnormality map at the same time. We
show some experiments which illustrate the performance of this method
in comparison to some previous techniques.

1 Introduction

Mammograms are often interpreted by comparing left and right breasts or suc-
cessive mammograms of a same patient. Such comparisons help radiologists to
locate suspicious differences which indicate the presence of some abnormalities
[1]. Several Computer-Aided Diagnosis (CAD) systems have also used image
comparisons for detecting abnormalities [2,3,4].

In these systems, a difference image is used to compare two images. This
difference image is obtained by simple subtraction [2], weighted subtraction [3]
or nonlinear subtraction [4]. Then it is thresholded to extract suspicious regions.
However, the image comparison is not straightforward due to additional image
dissimilarities which are related to sensor noise, different radiation exposure,
and variation of breast positioning and compression and which cause high false-
negative rates in abnormality detection schemes. Image registration is commonly
carried out to compensate for these normal differences. Hence, the success of the
detection task based on image difference depends on the preliminary registration
process.

On the other hand, the registration problem is usually expressed as a mini-
mization of an energy composed of a regularization term and a similarity term.
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The definition of the similarity criterion relies on the nature of image gray-level
dependencies [5]. For instance, the Sum of Square Differences (SSD) is often
used whenever gray-level values are approximately the same in the two images
to be registered. However, the presence of pathologies in mammograms such
as lesions invalidates gray-level dependency assumptions. Hence, abnormalities
may distort registration constraints and cause registration errors. Incorporating
some knowledge about abnormalities can improve the registration.

In [6], F. Richard proposed a registration technique which down-weights the
influence of abnormalities in the computation of registration constraints. The
similarity criterion used is related to M-estimation criteria, also applied for op-
tical flow computation [7]. But, the M-estimation approaches characterize ab-
normalities as pixels generating large image differences, which is not always the
case. A more general approach consists of using mixture-based models, in which
abnormalities are represented by a probability distribution, as it was done for
the optical flow estimation by Jepson and Black [8], and for image registration
by Hasler et al. [9], and by Hachama et al. [10].

In this paper, we present a mixture-based technique related to these previous
works. The main feature of our model is the definition of a probability lesion
map, which weights the mixture distributions at each pixel position by a prob-
ability to belong to a lesion. In this manner, we can interleave the registration
and abnormality detection and thus take proper advantage of the dependence
between the two processes.

The mixture-based technique and its mathematical formulation are presented
in Section 2. In Section 3, we illustrate the method behavior on some examples
and compare it with some classical techniques.

2 The Mixture-Based Technique

Let I and J be two images of the same size (M, N), having gray-level values
in the set {0, ..., 255} and defined on a discrete grid Ωd = {( i

M−1 , j
N−1), (i, j) ∈

{0, ..., M − 1} × {0, ..., N − 1}} associated to Ω = [0, 1]2. Image coordinates are
matched using applications φ which map Ωd into itself. Usually, registering the
source image I and the target image J consists of finding an application φ which
is such that the deformed image Iφ = I ◦ φ is “similar” to the target image J .

We assume that lesions may be present in the images. Let L be the lesion
map which associates to each pixel of Ωd its probability to belong to a lesion.
In the following, we formulate a bayesian model which allows us to estimate
simultaneously the deformation φ and the lesion map L. Thus, we can solve the
problems of image registration and abnormality detection at the same time.

2.1 Bayesian Formulation

Our formulation follows the Bayesian framework for image analysis laid out in
[11]. Assuming that images, transformations and lesion maps are realizations of
some random fields, Bayes rule can be expressed as
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p(φ, L|I, J) =
p(I, J |φ, L) p(φ, L)

p(I, J)
.

The Bayes rule allows us to write the posterior distribution p(φ, L|I, J) which
contains the information about the unknowns φ and L, in terms of the prior
p(φ, L) and the likelihood p(I, J |φ, L). The prior contains information about the
most likely deformations and possible forms of lesions, namely, their morphology
and spatial configuration. The relation between registered images is encapsulated
in the likelihood term. The probability p(I, J) is constant because it only depends
on the observed fields I and J .

As a simplification, we assume that the deformation φ and the lesion map L
are independent. In fact, lesions could generate specific local deformations that
we choose to neglect. Thus, the Bayes rule can be written as

p(φ, L|I, J) α p(I, J |φ, L) p(φ) p(L).

We can estimate the pair (φ, L) as the solution of the Maximum A Posteriori:

(˜φ, ˜L) = arg max(φ,L) p(I, J |φ, L) p(φ) p(L) . (1)

To ensure that the transformations remain smooth, we assume that they arise
from the Gibbs distribution:

p(φ) =
1
Z1

e−Hd(φ) , (2)

where Z1 is a normalization constant, and Hd is a discrete elasticity potential
[12] (a continous version is given by Equation (9)). We also assume that the
lesion map arises from a Gibbs distribution:

p(L) =
1
Z2

e−Rd(L) , (3)

where Z2 is a normalization constant, and Rd is a discrete energy of regulariza-
tion. We use in this paper an energy restricting the amount of abnormal pixels
in the images via a real parameter αL :

Rd(L) = αL

∑

x∈Ωd

L(x) .

More specific terms can be defined to describe the spatial configurations of each
type of lesion. We will investigate the use of such energies in the future.

In order to define the likelihood p(I, J |φ, L), we assume that, given the trans-
formation φ, the probability of the pair of images (I, J) depends only on the
registered images (Iφ, J) and that pixels are independent. Hence, we can write

p(I, J |φ, L) =
∏

x

p(Iφ(x), J(x)|L(x)). (4)
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The probability of the pair (Iφ(x), J(x)) depends on the class of the pixel
x. Each class is characterized by a probability distribution, denoted by pN
for the normal tissue and pL for the lesion. Thus, the probability distribution
p(Iφ(x), J(x)|L(x)) can be defined as a mixture of the two class distributions:

p(Iφ(x), J(x)|L(x)) = (1 − L(x))pN(Iφ(x), J(x)) + L(x)pL(Iφ(x), J(x)). (5)

The value of the lesion map L at location x is used to weight both class dis-
tributions. In what follows, we present the distributions pN and pL we used in
experiments.

The Normal Tissue Class. Normally, gray-level values of registered images
should be exactly the same at corresponding positions. But, in practice, these
gray-level values usually differ because of noise or different image acquisition
parameters. Assuming that these variations have a discrete Gaussian distribution
with mean 0 and variance σ2 (σ = 15 in the experiments), we can define pN as

pN(Iφ(x), J(x)) =
1

C1
exp(−| Iφ(x) − J(x) |

2σ2

2

), (6)

where C1 is the normalization constant.

The Lesion Class. The definition of the lesion distribution is a difficult task.
Each type of lesion requires the definition of a specific distribution. For the
sake of simplicity, we assume that a lesion is present in the target image J . We
characterize the lesion just as an area which is brighter in the target image than
it is in the source image, defining the following distribution:

pL(Iφ(x), J(x)) =
{

0, if Iφ(x) > J(x)
1

C2
, otherwise, (7)

where C2 is the normalization constant.

2.2 Numerical Resolution

Up to now, we have formulated a Bayesian registration model in a discrete
setting. We now transform the discrete model into a continuous model so as
to be able to use variational resolution techniques. First, we rewrite the MAP
estimate (Equation (1)) as the minimization of the negative-log function

Ed(φ, L) = − log(p(φ)) − log(p(L)) − log(p(I, J |φ, L)).

Then, using Equation (4) and Gibbs distributions (2) and (3), we get

Ed(φ, L) = Hd(φ) + Rd(L) −
∑

x∈Ωd

log(p(Iφ(x), J(x)|L(x))) + K,
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where K is a constant. Next, following approaches in [13,12], we define a continu-
ous expression of this energy, by interpolating all functions by the finite element
method and replacing sums on the pixel grid Ωd by integrals on Ω:

E(φ, L) = H(φ) + R(L) −
∫

Ω

log(p(Iφ(x), J(x))) dx, (8)

where the probability distribution p(Iφ(x), J(x)) is the obtained continuous ver-
sion of the mixture distribution given by Equation (5). H(φ) is the elasticity
potential defined as

∑

i,j=1,2

∫

Ω

[λ
∂ui(x)

∂xi

∂uj(x)
∂xj

+ µ(
∂ui(x)
∂xj

+
∂uj(x)

∂xi
)2]dx, (9)

where u = φ− id, and λ and µ are the Lame elasticity constants. The term R(L)
is the following energy:

R(L) = αL

∫

Ω

L(x) dx .

As in [14,6], we use a gradient descent algorithm on the energy E and finite
elements to approximate solutions of the minimization problem. We use a vari-
able change L = 1

1+e−M so as to satisfy the constraints 0 ≤ L(x) ≤ 1 and to be
able to differentiate the energy with respect to the second variable M .

3 Results

In this section, we illustrate the characteristics of the mixture model by com-
paring its performance to those of the SSD technique [12], and the M-estimator
based technique proposed in [6]. We applied algorithms to a pair of bilateral
mammograms (case 21 of the MIAS database [15]), for which the target image
contains a lesion (bright circular region at the bottom of Image (1-b)).

Registration results. Registrations obtained with the SSD and M-estimation
techniques tend to incorrectly match the lesion and the bright tissue in the
source image and thus reduce image differences due to the lesion (Images (1-d)
and (1-e)). This is corrected by the mixture-based technique which registers the
images correctly while preserving differences due to the lesion (Image (1-f)).

Detection results. We compare lesion binary images obtained with the three
techniques. For the SSD and the M-estimation techniques, lesion binary images
are obtained by thresholding the image difference generated by the adaptively
weighted subtraction [3]. The fact that abnormal pixels tend to have relatively
higher gray-level values is used to weight the difference between a pair of pixels by
gray-level value of the pixel of the image J . For the mixture-based method, we set
αL = 0.1 and threshold the lesion map. The thresholds are chosen so as to have
the same amount of abnormal pixels in the three lesion binary images obtained.
Figure 2 shows the lesion binary images obtained with the three techniques for
different amounts of abnormal pixels.
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(a) (b) (c)

(d) (e) (f)

Fig. 1. Registration of bilateral mammograms. (a) Source image I, (b) Target image J,
(c) The difference between the images before registration. The difference between the
images after the registration using (d) the SSD method, (e) the M-estimation method,
(f) the mixture-based method.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2. The detection results. (a) The target image containing the lesion. For 10550
abnormal pixels, the results obtained with the (b) SSD method, (c) M-estimation
based method, (d) The mixture-based method. (e) The expert segmented lesion. For
4180 pixels, the results obtained with the (f) SSD method, (g) M-estimation based
method, (h) The mixture based method.
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For evaluating and comparing the three algorithms without the influence of a
threshold value, we have represented on Figure 3 the FROC curves obtained with
the three methods. The FROC curve plots the sensitivity (fraction of detected
true positives calculated by using the expert segmented image) as a function of
the number of false positives. For the mixture-based technique, we have obtained
similar FROC curves for different values of the weight αL. We have represented
the FROC curve obtained when αL = 0.1.
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Fig. 3. FROC Curves for the three detection methods

As observed on Figure (3), the FROC curve associated to the mixture-based
method is the highest. So, the detection by the mixture-based technique is more
sensitive. For instance, for 10000 false positive pixels (2% of image pixels), the
detection rate grows from 0.632 for the SSD and 0.627 for the M-estimation
based method, to 0.947 for the mixture based method.

4 Conclusion

We have presented a method for joint mammogram registration and abnormal-
ity detection. Thanks to this combined approach, the mixture-based method
improves the mammogram registration and increase the sensitivity of lesion de-
tection. In the future, we will focus on how to design a lesion model for different
types of lesions, and on the estimation of the distribution parameters for both
lesion and normal tissue classes. Furthermore, we plan to apply the mixture
method to a full mammogram database.
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