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MAXIMAL MEANINGFUL EVENTS AND APPLICATIONS
TO IMAGE ANALYSIS1

BY AGNÈS DESOLNEUX, LIONEL MOISAN AND JEAN-MICHEL MOREL

CMLA, ENS Cachan

We discuss the mathematical properties of a recently introduced method
for computing geometric structures in a digital image without any a priori
information. This method is based on a basic principle of perception which
we call the Helmholtz principle. According to this principle, an observed
geometric structure is perceptually “meaningful” if the expectation of its
number of occurrences (in other words, its number of false alarms, NF) is
very small in a random image. It is “maximal meaningful” if its NF is minimal
among the meaningful structures of the same kind which it contains or is
contained in. This definition meets the gestalt theory requirement that parts
of a whole are not perceived. We explain by large-deviation estimates why
this definition leads to an a priori knowledge-free method, compatible with
phenomenology. We state a principle according to which maximal structures
do not meet. We prove this principle in the large-deviations framework in
the case of alignments in a digital image. We show why these results make
maximal meaningful structures computable and display several applications.

1. Introduction. Digital images can represent any kind of outdoor or indoor
scenes and can also be the result of astronomical, biological, medical, . . .
experiments. Thus, no a priori model of any kind can be available for dealing
with such undetermined data. Now, phenomenology tells us a different story. The
Gestalt school pointed out the existence of stable, robust perceptions common to
all humans. This school fixed qualitative “grouping processes” which should be
universal in action on every image. According to gestalt theory, “grouping” is
the main process in our visual perception (see [16], [22] and [35]). Whenever
points (or previously formed visual objects) have a characteristic in common,
they get grouped and form a new, larger visual object, a “gestalt.” Some of the
main grouping characteristics are color constancy, “good continuation,” alignment,
parallelism, common orientation, convexity and closedness (for a curve), among
others. In addition, the grouping principle is recursive. For example, if points
have been grouped into lines, then these lines may again be grouped according
for example, to parallelism. The gestalt theory leads one to conjecture about
the existence of parameter-less methods to compute these qualitative geometric
primitives in any image.

Received May 2001; revised March 2003.
1Supported by Office of Naval Research Grant N00014-97-1-0839.
AMS 2000 subject classifications. 33B20, 62H15, 62H35, 62M40, 68U10, 68T45, 91E30.
Key words and phrases. Image analysis, perception, alignment, tail of the binomial distribution,

rare events, large deviations.

1822



MAXIMAL MEANINGFUL EVENTS 1823

These qualitative grouping principles can be formalized by the so-called
Helmholtz principle. This principle attempts to describe when perception decides
to group objects according to some quality (color, alignment, etc.). It can be stated
in the following way. Assume that objects O1,O2, . . . ,On are present in an image.
Assume that k of them, say O1, . . . ,Ok , have a common feature, say same color,
same orientation and so on. We are then facing the dilemma: is this common
feature happening by chance or is it significant? To answer this question, we make
the following mental experiment: we assume that the considered quality has been
randomly and uniformly distributed on all objects O1, . . . ,On. Notice that this
quality may be spatial (e.g., position, orientation). Then we (mentally) assume
that the observed position of objects in the image is a random realization of this
uniform process, and ask the question: is the observed repartition probable or not?
The Helmholtz principle states that if the expectation in the image of the observed
configuration O1, . . . ,Ok is very small, then the grouping of these objects makes
sense, is a gestalt.

The Helmholtz principle can be illustrated by the psychophysical experiment
of Figure 1. On the left, we display roughly 400 segments whose directional
accuracy (computed as the width–length ratio) is about 12 degrees. Assuming
that the directions and the positions of the segments are independent, uniformly
distributed, we can compute the expectation of the number of alignments of four
segments or more. (We say that segments are aligned if they belong to the same
line, up to the given accuracy.) The expectation of such alignments in this case
is about 2.5. Thus, we can expect two or three such alignments of four segments
and we found them by computer. Do you see them? On the right, we performed
the same experiment with about 30 segments, with accuracy (width–length ratio)
equal to 7 degrees. The expectation of a group of four aligned segments is 1/250.
Most observers detect them immediately. This leads us to the following general
definition of perceptual events (cf. [6]).

FIG. 1. Illustration of Helmholtz principle in human perception. A group of four aligned segments
exists in both images, but it can hardly be seen in the left image because such a configuration is not
exceptional in view of the total number of segments. In the right image, we immediately perceive the
alignment as a large deviation from randomness that could hardly happen by chance.
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DEFINITION 1 (ε-meaningful event). We say that an event of type “such
configuration of points has such property” is ε-meaningful if the expectation in
an image of the number of occurrences of this event is less than ε.

When ε ≤ 1, we talk about meaningful events. If the Helmholtz principle is true,
we perceive events if and only if they are meaningful in the preceding sense. The
alignment on the right side of Figure 1 is meaningful while the left side of the
figure contains no meaningful alignment of four segments.

Our plan is as follows. In Section 2, we explain our definition of meaningful
alignments. Section 3 defines the “number of false alarms” and checks the
consistency of this definition. In Section 4, we prove asymptotic (as l → ∞) and
nonasymptotic estimates about the meaningfulness of the following observation:
“k well-aligned points in a segment of length l.” Two main points are:

• We prove the logε and log N dependence of this definition. This explains why
we can always fix ε = 1 in practice and therefore get rid of this parameter.

• We show that detection is possible with a
√

l excess of alignments in a segment
of length l.

In Section 5, we prove that “detectability increases with resolution,”
a mathematical sanity check. Section 6 introduces “maximal meaningfulness.”
This is, to our knowledge, a first mathematical theory of the “masking” phenom-
enon in gestalt theory and a very practical tool for singling out the best explanation
for each detectable alignment. Section 6 develops several mathematical and numer-
ical arguments in favor of our main conjecture: two maximal meaningful segments
on the same line have an empty intersection. In particular, it is proved that this con-
jecture is true in the large-deviations framework. In Section 7, we address the other
remaining method parameter, namely, the precision p. We prove that it is useless
to decrease this parameter, the roughest value being enough to get all detections.
In Section 8, we end with joint numerical experiments, identifying maximal align-
ments in a digital image. Section 9 is devoted to an a posteriori bibliographical
discussion and points out several extensions.

2. Definition of meaningful segments.

2.1. The discrete nature of applied geometry. Perceptual and digital images
are the result of a convolution followed by a spatial sampling, as described
in Shannon–Whittaker theory. From the samples, a continuous image may be
recovered by Shannon interpolation, but the samples by themselves contain all of
the image information. From this point of view, one could claim that no absolute
geometric structure is present in an image, for example, no straight line, no circle,
no convex set and so on. We claim, in fact, the opposite and our definition to follow
will explain in which sense we can be “sure” that a line is present in a digital image.
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Let us first explain what the basic local information is that we can dispose of in a
digital image.

Let us consider a gray-level image of size N (i.e., a regular grid of N2

pixels). At each point x, or pixel, of the discrete grid, we have a gray level u(x)

which is quantized and therefore inaccurate. We may compute at each point the
normalized (unit norm) gradient, which is the simplest local contrast invariant
information (local contrast invariance is a necessary requirement in image analysis
and perception theory; see [22] and [35]). The direction vector dir(i, j) we attach
to each point (i, j) of the image is simply obtained by a rotation of π/2 of
the normalized gradient, so that it represents the local direction of the level
line (u = constant) passing through the current point. A simple finite-differences
scheme gives

dir(i, j) = 1

‖ �D‖
�D,

where

�D = 1
2

(−u(i, j + 1) − u(i + 1, j + 1) + u(i, j) + u(i + 1, j)

u(i + 1, j) + u(i + 1, j + 1) − u(i, j) − u(i, j + 1)

)
.

Then we say that two points X and Y have the same direction with precision 1/n

if ∣∣Angle
(

dir(X),dir(Y )
)∣∣ ≤ π

n
.

In agreement with psychophysics and numerical experimentation, we consider that
n should not exceed 16.

According to the Helmholtz principle, we treat the direction at all points in an
image as a uniformly distributed random variable. In the following, we assume
that n > 2 and we set p = 1/n (p < 1/2); p is the accuracy of the direction. We
interpret p as the probability that two independent points have the “same” direction
with the given accuracy p. In a structure-less image, when two pixels are such that
their distance is larger than 2, the directions computed at the two considered pixels
should be independent random variables.

From now on, we do the computation, by the Helmholtz principle, as though
each pixel had a direction which is uniformly distributed, two points at a distance
larger than q = 2 having independent directions. Let A be a segment in the
image made up of l independent pixels (this means that the distance between two
consecutive points of A is 2 and so the real length of A is 2l). We are interested in
the number of points of A having their direction aligned with the direction of A.
Such points of A will simply be called aligned points of A.

The question is: what is the minimal number k(l) of aligned points that we must
observe on a segment of length l so that this event becomes meaningful when it is
observed in an image?
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2.2. Definition of meaning. Let A be a straight segment with length l and let
x1, x2, . . . , xl be the l (independent) points of A. Let Xi be the random variable
whose value is 1 when the direction at pixel xi is aligned with the direction of A,
and 0 otherwise. We then have the following Bernoulli distribution for Xi :

P[Xi = 1] = p and P[Xi = 0] = 1 − p.

The random variable representing the number of xi having the “good” direction is

Sl = X1 + X2 + · · · + Xl.

Because of the independence of the Xi , the law of Sl is given by the binomial
distribution

P[Sl = k] =
(

l

k

)
pk(1 − p)l−k.

When we consider a segment of length l, we want to know whether it is
ε-meaningful or not among all the segments of the image (and not only among the
segments having the same length l). Let m(l) be the number of oriented segments
of length l in an N ×N image. We define the total number of oriented segments in
an N × N image as the number of pairs (x, y) of points in the image (an oriented
segment is given by its starting point and its ending point) and so we have

lmax∑
l=1

m(l) � N4.

DEFINITION 2 (ε-meaningful segment). A segment of length l is ε-meaningful
in an N × N image if it contains at least k(l) points having their direction aligned
with the one of the segments, where k(l) is given by

k(l) = min
{
k ∈ N,P[Sl ≥ k] ≤ ε

N4

}
.(1)

Let us develop and explain this definition. For 1 ≤ i ≤ N4, let ei be the
following event: “the ith segment is ε-meaningful” and let χei

denote the
characteristic function of the event ei . We have

P
[
χei

= 1
] = P

[
Sli ≥ k(li )

]
,

where li is the length of the ith segment. Notice that if li is small we may have
P[Sli ≥ k(li)] = 0. Let R be the random variable representing the exact number
of ei occurring simultaneously in a trial. Since R = χe1 + χe2 + · · · + χe

N4 , the
expectation of R is

E[R] = E
[
χe1

] + E
[
χe2

] + · · · + E
[
χeN4

] =
lmax∑
l=0

m(l)P[Sl ≥ k(l)].
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We compute here the expectation of R but not its law because it depends a lot on
the relations of dependence between the ei . The main point is that segments may
intersect and overlap, so that the ei events are not independent, and may even be
strongly dependent.

By definition, we have

P[Sl ≥ k(l)] ≤ ε

N4
so that E[R] ≤

lmax∑
l=1

ε

N4
m(l) ≤ ε.

This means that the expectation of the number of ε-meaningful segments in an
image is less than ε.

This notion of ε-meaningful segments has to be related to the classical
“α-significance” in statistics, where α is simply ε/N4. The difference which leads
us to have a slightly different terminology is the following: we are not in a position
to assume that the segments detected as ε-meaningful are independent in any way.
Indeed, if, for example, a segment is meaningful it may be contained in many larger
segments, which are also ε-meaningful. Thus, it will be convenient to compare the
number of detected segments to the expectation of this number. This overcomes
a difficulty raised by Stewart in [34] (see also the discussion in the last section).
This is not exactly the same situation as in failure detection, where the failures are
somehow disjoint events.

3. Number of false alarms.

3.1. Definition.

DEFINITION 3 (Number of false alarms). Let A be a segment of length l0 with
at least k0 points having their direction aligned with the direction of A. We define
the number of false alarms of A as

NF(k0, l0) = N4 · P
[
Sl0 ≥ k0

] = N4 ·
l0∑

k=k0

(
l0
k

)
pk(1 − p)l0−k.(2)

The number NF(k0, l0) of false alarms of the segment A represents an upper
bound of the expectation in an image of the number of segments of probability
less than that of the considered segment.

3.2. Properties of the number of false alarms.

PROPOSITION 1. The number of false alarms NF(k0, l0) has the following
properties:

1. NF(0, l0) = N4, which proves that the event for a segment to have more than
zero aligned points is never meaningful.
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2. NF(l0, l0) = N4 ·pl0 , which shows that a segment such that all of its points have
the “good” direction is ε-meaningful if its length is larger than (−4 logN +
log ε)/ logp.

3. NF(k0 + 1, l0) < NF(k0, l0). This can be interpreted as saying that if two
segments have the same length l0, the “more meaningful ” one is the one that
has the more “aligned” points.

4. NF(k0, l0) < NF(k0, l0 + 1). This property can be illustrated by the following
diagram of a segment (where • represents a misaligned point and → represents
an aligned point):

→→ • →→ •• →→→→→ •
If we remove the last point (on the right), which is misaligned, the new segment
is less probable and therefore more meaningful than the considered one.

5. NF(k0 + 1, l0 + 1) < NF(k0, l0). Again, we can illustrate this property:

→→ • →→ •• →→→→→→
If we remove the last point (on the right), which is aligned, the new segment is
more probable and therefore less meaningful than the considered one.

This proposition is an easy consequence of the definition and properties of the
binomial distribution (see, e.g., [10]). If we consider a segment of length l (made
up of l independent pixels), then the expectation of the number of points of the
segment having the same direction as that of the segment is simply the expectation
of the random variable Sl , that is,

E[Sl] =
l∑

i=1

E[Xi] =
l∑

i=1

P[Xi = 1] = p · l.

We are interested in ε-meaningful segments, which are the segments such that their
number of false alarms is less than ε. These segments have a small probability (less
than ε/N4), and since they represent alignments (deviation from randomness),
they should contain more aligned points than the expected number computed
above. That is the main point of the following proposition.

PROPOSITION 2. Let A be a segment of length l0 ≥ 1 containing at least k0
points having the same direction as that of A. If NF(k0, l0) ≤ p · N4 (which is the
case when A is meaningful because N is very large and thus pN4 < 1), then

k0 ≥ pl0 + 1 − p.

This is a “sanity check” for the model. In the following, we will write P (k, l)

for P[Sl ≥ k]. Proposition 2 will be proved by Lemma 2, where we will extend the
discrete function P (k, l) = P[Sl ≥ k] to a continuous domain.
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4. Orders of magnitude and asymptotic estimates for meaningfulness. In
this section, we shall give precise asymptotic and nonasymptotic estimates of the
thresholds k(l), which roughly say that

k(l) � pl +
√

Cl log
N4

ε
,

where 2p(1 − p) ≤ C ≤ 1/2. Some of these results are illustrated in Figure 2.
These estimates are not necessary for the algorithm [because P (k, l) is easy to
compute], but they provide an interesting order of magnitude for k(l). In particular,
we will see how the theory of large deviations and other inequalities concerning
the tail of the binomial distribution can provide us with a sufficient condition for
meaningfulness. In what follows, the precision p < 1/2 is fixed. We start with an
estimate of the smallest length l of a detected alignment.

The first simple necessary condition we can get is a threshold on the length l.
For an ε-meaningful segment, we have

pl ≤ P[Sl ≥ k(l)] ≤ ε

N4 ,

FIG. 2. Estimates for the threshold of meaningfulness k(l). The middle (step-case) curve represents
the exact value of the minimal number of aligned points k(l) to be observed on a 1-meaningful
segment of length l in an image of size 512 × 512 for a direction precision of 1/16. The upper and
lower curves represent estimates of this threshold obtained by Propositions 3 and 4.
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so that

l ≥ −4 logN + log ε

log p
.(3)

Let us give a numerical example: if the size of the image is N = 512, and if
p = 1/16 (which corresponds to 16 possible directions), the minimal length of
a 1-meaningful segment is lmin = 9.

PROPOSITION 3 (Sufficient condition of ε-meaningfulness). Let S be a
segment of length l, containing at least k aligned points. If

k ≥ pl +
√

4 logN − logε

h(p)

√
l,

where

h(p) = 1

1 − 2p
log

1 − p

p
,

then S is ε-meaningful.

PROOF. This immediately follows from Hoeffding’s inequality [14]. �

Let us now work on asymptotic estimates of P (k, l) when l is “large.” Our aim
is to get the asymptotic behavior of the threshold k(l) when l is large. The problem
is that if l tends to ∞, we also have to consider that N tends to ∞ (because, since
l is the length of a segment in an N × N image, necessarily l ≤ √

2N ).

PROPOSITION 4 [Asymptotic behavior of k(l)]. When N → +∞ and
l → +∞ in such a way that l/(logN)3 → +∞, one has

k(l) = pl +
√

2p(1 − p)l

(
log

N4

ε
+ O(log logN)

)
.(4)

PROOF. This directly follows from the following estimate (see, e.g., [10]): if
α(l) → +∞ and α(l)6/l → 0 as l → +∞, then

P
[
Sl ≥ pl + α(l)

√
lp(1 − p)

] ∼ 1√
2π

∫ +∞
α(l)

e−x2/2 dx. �

PROPOSITION 5 (Necessary condition for meaningfulness). We assume that
0 < p ≤ 1/4 and N are fixed. If a segment S = (k, l) is ε-meaningful, then

k ≥ pl + α(N)

√
lp(1 − p),(5)

where α(N) is uniquely defined by

1√
2π

∫ +∞
α(N)

e−x2/2 dx = ε

N4 .(6)
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PROOF. This proposition is a direct consequence of Slud’s theorem [33]: if
0 < p ≤ 1/4 and pl ≤ k ≤ l, then

P[Sl ≥ k] ≥ 1√
2π

∫ +∞
α(k,l)

e−x2/2 dx where α(k, l) = k − pl√
lp(1 − p)

.

The assumption 0 < p ≤ 1/4 is not a strong condition since it is equivalent to
considering that the number of possible oriented directions is larger than 4. �

5. Properties of meaningful segments.

5.1. Continuous extension of the binomial tail. We first extend the discrete
function P (k, l) to a continuous domain (see [10]).

LEMMA 1. The map

P̃ : (k, l) �→
∫ p

0 xk−1(1 − x)l−k dx∫ 1
0 xk−1(1 − x)l−k dx

(7)

is continuous on the domain {(k, l) ∈ R
2, 0 ≤ k ≤ l < +∞}, decreasing with

respect to k, increasing with respect to l, and for all integer values of k and l

one has P̃ (k, l) = P (k, l).

PROOF. The continuity results from classical theorems on the regularity of
parameterized integrals. Notice that the continuous extension of P̃ when k = 0 is
P̃ (0, l) = 1. The other properties are obtained by simple differentiation. �

The following property is a good example of the interest in the continuous
extension of P . This yields a proof of Proposition 2.

LEMMA 2. If l ≥ 1, then p ≤ P̃ (p(l − 1) + 1, l) < 1/2.

The right-hand side of this inequality is a known result: it has been proved by
Kaas and Buhrman [15]; indeed, they showed that, for the binomial distribution,
the median and the mean are distant by no more than max(p,1 − p), which is
1 − p in our case.

PROOF OF LEMMA 2. It is sufficient to prove that if k − 1 = p(l − 1), then

p

1 − p

∫ 1

p
xk−1(1 − x)l−k dx ≤

∫ p

0
xk−1(1 − x)l−k dx

<

∫ 1

p
xk−1(1 − x)l−k dx.

(8)
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For that purpose, we write f (x) = xk−1(1 − x)l−k and we study the map

g(x) = f (p − x)

f (p + x)
.

A simple computation gives that, up to a positive multiplicative term, g′(x) can be
written

2x2(
k − 1 − (1 − p)(l − 1)

) − 2p(1 − p)
(
k − 1 − p(l − 1)

)
,

and since k − 1 = p(l − 1) and p < 1/2, we have g′ < 0 on ]0,p]. Hence,
g(x) < g(0) = 1 on ]0,p], which implies∫ p

0
f (x) dx =

∫ p

0
f (p − x) dx <

∫ p

0
f (p + x) dx

=
∫ 2p

p
f (x) dx <

∫ 1

p
f (x) dx,

and the right-hand side of (8) is proved.
For the left-hand side, we follow the same reasoning with the map

g(x) = f (p − x)

f (p + (1 − p)/px)
.

After a similar computation, we obtain that g′ ≥ 0 on ]0,p], so that f (p − x) ≥
f (p + (1 − p)/px) on ]0,p]. We integrate this inequality to obtain∫ p

0
f (x) dx =

∫ p

0
f (p − x) dx ≥

∫ p

0
f

(
p + 1 − p

p
x

)
dx

= p

1 − p

∫ 1

p
f (x) dx,

which proves the left-hand side of (8). �

5.2. Density of meaningful segments. In general, it is not easy to compare
P (k, l) and P (k′, l′) by performing simple computations on k, k′, l and l′. Assume
that we have observed a meaningful segment S = (k, l) in an N × N image. We
increase the resolution of the image in such a way that the new image has size
λN ×λN , with λ > 1, and the considered segment is now Sλ = (λk,λl) (we admit
that the “density” of aligned points on the segment is scale invariant). Our aim is
to compare the number of false alarms of S and of Sλ, that is, to compare

N4P̃ (k, l) and (λN)4P̃ (λk,λl).

The result is given by the following proposition, and it shows that

NF(Sλ) < NF(S).

This is a consistency check for our model, since otherwise it would turn out that to
get a better view does not increase the detection!
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THEOREM 1. Let S = (k, l) be a 1-meaningful segment of an N × N image
(with N ≥ 6). Then the function defined for λ ≥ 1 by

λ �→ (λN)4P̃ (λk,λl)

is decreasing.

This theorem has the following corollary, which gives a way to compare the
“meaningfulness” of two segments of the same image.

COROLLARY 1. Let A = (k, l) and B = (k′, l′) be two 1-meaningful segments
of an N × N image (with N ≥ 6) such that

k′

l′
≥ k

l
and l′ > l.

Then B is more meaningful than A, that is, NF(B) < NF(A).

PROOF. Indeed, we can take λ = l′/l > 1, so that k′ ≥ λk. We then have, by
Theorem 1, (λN)4P̃ (k′, l′) ≤ N4P̃ (k, l) and therefore N4P̃ (k′, l′) < N4P̃ (k, l),
that is, NF(B) < NF(A). �

COROLLARY 2. The concatenation of two meaningful segments is more
meaningful than the least meaningful of both.

PROOF. Let A = (k, l) and B = (k′, l′) be two meaningful segments lying on
the same line. We assume that A and B are consecutive, so that A ∪ B is simply a
(k + k′, l + l′) segment. Then, since

k + k′

l + l′
≥ min

(
k

l
,
k′

l′
)
,

we deduce, owing to the above corollary, that NF(A ∪ B) < max(NF(A),NF(B)).
�

The next lemma is useful to prove Theorem 1. We give its proof in the Appendix.

LEMMA 3. Define, for p < r ≤ 1, B(r, l) = P̃ (rl, l). Then one has

1

B

∂ logB

∂l
<

1

l
− r log

r

p
− (1 − r) log

1 − r

1 − p
.

PROOF OF THEOREM 1. Let us define r = k/l (note that, since S is
1-meaningful, we have r > p). We first claim that

r log
r

p
+ (1 − r) log

1 − r

1 − p
≥ 3 logN

l
.(9)
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Indeed, using Stirling’s formula, we get

1

N4 ≥ P (k, l) ≥
(

l

k

)
pk(1 − p)l−k

≥ 2e−1/6
√

2πl
exp

(
−l

(
r log

r

p
+ (1 − r) log

1 − r

1 − p

))
,

so that

l

(
r log

r

p
+ (1 − r) log

1 − r

1 − p

)
≥ log

(
CN4
√

l

)
with C = 2e−1/6

√
2π

.

Since l ≤ √
2N (because l is the length of a segment of an N × N image) and

N ≥ 6, we have

log
(

CN4
√

l

)
≥ 3 logN + log

√
N

l
+ log

(
C

√
N

)

≥ 3 logN + log
(

C
√

6

21/4

)
≥ 3 logN,

so that (9) holds.
Now, let f be the function defined for λ ≥ 1 by f (λ) = (λN)4P̃ (λk,λl) =

(λN)4B(r,λl). If we compute the derivative of f and use Lemma 3, we get

(logf )′(λ) = 4

λ
+ l

∂ log B

∂l
(r, λl)

<
4

λ
+ l

(
1

λl
− r log

r

p
− (1 − r) log

1 − r

1 − p

)

<
5

λ
− 3 logN,

which is negative owing to the hypothesis N ≥ 6. �

REMARK. For the approximation of P̃ (k, l) given by the Gaussian law

G(k, l) = 1√
2π

∫ +∞
α(k,l)

e−x2/2 dx,

where

α(k, l) =
(

k

l
− p

)√
l

p(1 − p)
,

we immediately have the result that G(k′, l′) < G(k, l) when k′/l′ ≥ k/l > p and
l′ > l.



MAXIMAL MEANINGFUL EVENTS 1835

6. Maximal meaningful segments.

6.1. Definition. Suppose that on a straight line we have found a meaningful
segment S with a very small number of false alarms [i.e., NF(S) � 1]. Then, if we
add some “spurious” points at the end of the segment, we obtain another segment
with probability higher than that of S and still having a number of false alarms less
than 1, which means that this new segment is still meaningful (see the following
diagram):

→→→→→→→→→→→→→→→→→→ • • ••
In the same way, it is likely to happen in general that many subsegments of S

having a probability higher than that of S will still be meaningful (see Section 8,
where this problem obviously occurs for the “pencil strokes” image). These
remarks justify the introduction of the following notion of “maximal segment.”

DEFINITION 4 (Maximal segment). A segment A is maximal if:

(1) it does not contain a strictly more meaningful segment: ∀B ⊂ A,NF(B) ≥
NF(A);

(2) it is not contained in a more meaningful segment: ∀B ⊃ A,NF(B) > NF(A).

Then we say that a segment is maximal meaningful if it is both maximal and
meaningful. This notion of “maximal meaningful segment” is linked to what
gestaltists called the “masking phenomenon.” According to this phenomenon,
most parts of an object are “masked” by the object itself except the parts that are
significant from the point of view of the construction of the whole object.

PROPOSITION 6 (Properties of maximal segments). Let A be a maximal
segment. Then:

(1) the two endpoints of A have their direction aligned with the direction of A;
(2) the two points next to A (one on each side) do not have their direction aligned

with the direction of A.

This is an easy consequence of Proposition 1.

6.2. A conjecture about maximality. Up to now, we have established some
properties that permit us to characterize or compare meaningful segments. We now
study the structure of maximal segments and give some evidence that two distinct
maximal segments on the same straight line have no common point.
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CONJECTURE 1. If (l, l′, l′′) ∈ [1,+∞)3 and (k, k′, k′′) ∈ [0, l] × [0, l′] ×
[0, l′′], then

min
(
p, P̃ (k, l), P̃ (k + k′ + k′′, l + l′ + l′′)

)
< max

(
P̃ (k + k′, l + l′), P̃ (k + k′′, l + l′′)

)
.

(10)

Let us state immediately some relevant consequences of Conjecture 1.

COROLLARY 3 (Union and intersection). If A and B are two segments on the
same straight line, then, under Conjecture 1,

min
(
pN4,NF(A ∩ B),NF(A ∪ B)

)
< max

(
NF(A),NF(B)

)
.

This is a direct consequence of Conjecture 1 for integer values of k, k′, k′′, l, l′
and l′′. Numerically, we checked this property for all segments A and B such that
|A ∪ B| ≤ 256. For p = 1/16, we obtained

min|A∪B|≤256

max(NF(A),NF(B)) − min(pN4,NF(A ∩ B),NF(A ∪ B))

max(NF(A),NF(B)) + min(pN4,NF(A ∩ B),NF(A ∪ B))

� 0.000754697 · · · > 0,

this minimum (which is independent of N ) being obtained for A = (23,243),
B = (23,243) and A ∩ B = (22,230) [as before, the pair (k, l) we attach to each
segment represents the number of aligned points (k) and the segment length (l)].

THEOREM 2 (Maximal segments are disjoint under Conjecture 1). Suppose
that Conjecture 1 is true. Then any two maximal segments lying on the same
straight line have no intersection.

Notice that this property applies to maximal segments and not only to maximal
meaningful segments.

PROOF OF THEOREM 2. Suppose that one can find two maximal segments
(k + k′, l + l′) and (k + k′′, l + l′′) that have a nonempty intersection (k, l). Then,
according to Conjecture 1, we have

min
(
p,P (k, l),P (k + k′ + k′′, l + l′ + l′′)

)
< max

(
P (k + k′, l + l′),P (k + k′′, l + l′′)

)
.

If the left-hand side term is equal to p, then we have a contradiction since
one of (k + k′, l + l′) or (k + k′′, l + l′′) is strictly less meaningful than the
segment (1,1) it contains. If not, we have another contradiction because one of
(k + k′, l + l′) or (k + k′′, l + l′′) is strictly less meaningful than one of (k, l) or
(k + k′ + k′′, l + l′ + l′′). �
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REMARK. The numerical checking of Conjecture 1 ensures that, for p = 1/16
(but we could have checked for another value of p), two maximal meaningful
segments with total length less than 256 are disjoint, which is enough for most
practical applications.

The following proposition shows that Conjecture 1 can be deduced from a
stronger (but simpler) conjecture: the concavity in a particular domain of the level
lines of the natural continuous P̃ extension of P involving the incomplete Beta
function.

PROPOSITION 7. If the map (k, l) �→ P̃ (k, l) defined in Lemma 1 has
negative curvature on the domain Dp = {(k, l) ∈ R

2, p(l − 1) + 1 ≤ k ≤ l}, then
Conjecture 1 is true.

It is equivalent to say that the level curves l �→ k(l, λ) of P̃ defined by
P̃ (k(l, λ), l) = λ are concave, that is, satisfy

∀ (k0, l0) ∈ Dp,
∂2k

∂l2

(
l0, P̃ (k0, l0)

)
< 0.

PROOF OF PROPOSITION 7. We first prove that if k −1 > p(l −1) and µ > 0,
then the map

x �→ P̃ (k + µx, l + x)

has no local minimum at x = 0. Call this map f . Then it is sufficient to prove that
either f ′(0) �= 0 or [f ′(0) = 0 and f ′′(0) < 0]. If f ′(0) = 0, then

µ = − P̃l

P̃k

(k, l),

so that

f ′′(0) = µ2P̃kk + 2µP̃kl + P̃ll = curv(P̃ )(k, l) · (P̃ 2
k + P̃ 2

l

)3/2

P̃ 2
k

< 0.

We can now prove Proposition 7. Because the inequality we want to prove
is symmetric in k′ and k′′, we can suppose that k′′/l′′ ≥ k′/l′. If k + k′ − 1 ≤
p(l + l′ − 1), then P̃ (k + k′, l + l′) > p and we are finished. Thus, in the following
we assume k + k′ − 1 > p(l + l′ − 1). Let us define the map

f (x) = P̃
(
k + x(k′ + k′′), l + x(l′ + l′′)

)
for x ∈ [0,1].

Note that, for x0 = l′/(l′ + l′′) ∈]0,1[, we have

k + x0(k
′ + k′′) = k + l′

l′ + l′′
(k′ + k′′) ≥ k + l′

l′ + l′′
(
k′ + k′l′′

l′
)

= k + k′,
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which implies that P̃ (k + k′, l + l′) ≥ f (x0). Hence, it is sufficient to prove that

min
(
p,f (0), f (1)

)
< f (x0).

The set

S = {
x ∈ [0,1], k + x(k′ + k′′) − 1 − p

(
l + x(l′ + l′′) − 1

)
> 0

}
is a connected segment that contains x0 because

k + x0(k
′ + k′′) − 1 ≥ k + k′ − 1 > p(l + l′ − 1) = p

(
l + x0(l

′ + l′′) − 1
)
.

Moreover, S contains 0 or 1 because the linear function involved in the definition
of S is either 0 or vanishes only once. Since f has no local minimum on S, we
conclude as announced that

f (x0) > min
x∈S

f (x) = min
x∈∂S

f (x) ≥ min
(
p,f (0), f (1)

)
,

since if x ∈ ∂S ∩]0,1[, then f (x) ≥ p owing to Lemma 2. �

All numerical computations we have realized so far for the function P̃ (k, l)

have been in agreement with Conjecture 1. Concerning theoretical results, we
shall see in the next section that this conjecture is asymptotically true. For
now, the following results show that Conjecture 1 is satisfied for the Gaussian
approximation of the binomial tail (correct for small deviations, that is, k �
pl + C

√
l ) and also for the large-deviation estimate.

PROPOSITION 8. The approximation of P (k, l) given by the Gaussian law

G(k, l) = 1√
2π

∫ +∞
α(k,l)

e−x2/2 dx, where α(k, l) = k − pl√
lp(1 − p)

has negative curvature on the domain Dp .

PROOF. The level lines G(k, l) = λ of G(k, l) can be written in the form

k(l, λ) = pl + c(λ)
√

l,

with c > 0 on the domain {k > pl}. Hence, we have

∂2k

∂l2
(l, λ) = − c(λ)

4l3/2

and, consequently, curv(G) < 0 on Dp . �

THEOREM 3. The large-deviation estimate of P (k, l) (see, e.g., [4]) given by

H(k, l) = exp
[
−k log

k

pl
− (l − k) log

l − k

(1 − p)l

]
(11)

has negative curvature on the domain {pl ≤ k ≤ l}.



MAXIMAL MEANINGFUL EVENTS 1839

PROOF. The level lines of H(k, l) are defined by

k(l, λ) log
k(l, λ)

pl
+ (

l − k(l, λ)
)

log
l − k(l, λ)

(1 − p)l
= λ.

We keep λ fixed and just write k(l, λ) = k(l). If we compute the first derivative of
the above equation, we get, after simplification,

k′(l) logk(l) − k′(l) log(pl)

+ (
1 − k′(l)

)
log

(
l − k(l)

) − (
1 − k′(l)

)
log

(
(1 − p)l

) = 0.

Now, again by differentiation,

k′′(l) log
(1 − p)k(l)

p(l − k(l))
− 1

l
+ k′(l)2

k(l)
+ (1 − k′(l))2

l − k(l)
= 0,

which is equivalent to

k′′(l) log
(1 − p)k(l)

p(l − k(l))
= −

(
k(l) − k′(l)l

)2

lk(l)(l − k(l))
,

so that H(k, l) has negative curvature on the domain pl ≤ k ≤ l. �

6.3. Partial results about Conjecture 1. In this section, we shall give an
asymptotic proof of Conjecture 1. In all the following, we assume that p and r

satisfy 0 < p < r < 1 and p < 1/2. The proof relies on the two following technical
propositions.

PROPOSITION 9 (Precise large-deviation estimate). Let

D(rl + 1, l + 1)

= p(1 − p)

(r − p)
√

2πlr(1 − r)
exp

[
−l

(
r log

r

p
+ (1 − r) log

1 − r

1 − p

)]
.

(12)

Then, for any positive p, r, l such that p < r < 1 and p < 1/2, one has

1 − 4r/((r − p)2l(1 − p))

1 + 1/(r(1 − r)
√

2πlr(1 − r) )
≤ P̃ (rl + 1, l + 1)

D(rl + 1, l + 1)

≤ 1

1 − 2/
√

2πlr(1 − r)
.

(13)

In particular, one has

P̃ (rl + 1, l + 1) ∼
l→+∞D(rl + 1, l + 1)

uniformly with respect to r in any compact subset of ]p,1[.
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PROPOSITION 10. For any λ ∈ [0,1] and l > 0, there exists a unique k(l, λ)

such that

P̃
(
k(l, λ) + 1, l + 1

) = λ.(14)

Moreover, one has

∂2k

∂l2

(
l, P̃ (rl + 1, l + 1)

)
∼

l→+∞ −(r log(r/p) + (1 − r) log((1 − r)/(1 − p)))2

lr(1 − r)(log(r(1 − p)/(1 − r)p))3

(15)

uniformly with respect to r in any compact subset of ]p,1[.

We shall not prove these results here: the proof is given in [5]; for more precise
results, see [23]. It is interesting to notice that (15) remains true when k(l, λ) is
defined not from P̃ but from its estimate D given by (12). In the same way, one
can prove that

∂k

∂l

(
l, P̃ (rl + 1, l + 1)

) −→
l→+∞

log((1 − p)/(1 − r))

log(r(1 − p)/(1 − r)p)

is satisfied by both definitions of k(l, λ). This proves that (12) actually gives a very
good estimate of P̃ , since it not only approximates the values of P̃ but also its level
lines up to second order.

THEOREM 4 (Asymptotic proof of Conjecture 1). There exists a continuous
map L : ]p,1[→ R such that (k, l) �→ P̃ (k, l) has negative curvature on the domain

DL
p = {

(rl + 1, l + 1), r ∈]p,1[, l ∈ [L(r),+∞[}.
PROOF. Define k(l, λ) by (14). Owing to Proposition 10, the function

r �→ ∂2k

∂l2

(
l, P̃ (rl + 1, l + 1)

) lr(1 − r)(log(r(1 − p)/(1 − r)p))3

(r log(r/p) + (1 − r) log((1 − r)/(1 − p)))2

tends to −1 as l goes to ∞, and the convergence is uniform with respect to r in
any compact subset of ]p,1[. Thus, we deduce that the map

r �→ l(r) = inf
{
l0 > 0,∀ l ≥ l0, curv P̃ (rl + 1, l + 1) < 0

}
is bounded on any compact subset of ]p,1[. Now, defining L(r) as a continuous
upper bound for l(r) yields the desired result. For example, one can take

L(r) = sup
n∈Z

dn(r),
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where dn is the unique linear function passing through the points(
an−1, max

t∈[an−2,an]
l(t)

)
and

(
an, max

t∈[an−1,an+1]
l(t)

)
,

and (an)n∈Z an increasing sequence such that

lim
n→−∞an = p and lim

n→+∞an = 1. �

7. About the precision p. In this section, we address the problem of the
choice of the precision p. We show that it is useless to increase artificially the
precision: this yields no better detection rates.

We consider a segment S of length l. We can assume that the direction of the
segment is θ = 0. Suppose that among the l points we observe k aligned points with
given precision p (i.e., k points having their direction in [−pπ,+pπ ]). Now, what
happens if we change the precision p into p′ < p? Knowing that there are k points
with direction in [−pπ,+pπ ], we can assume (by the Helmholtz principle) that
the average number of points having their direction in [−p′π,p′π ] is k′ = kp′/p.
The aim now is to compare

B(l, k,p) and B(l, k′,p′),

where B(l, k,p) = P̃ (k, l) for precision p [in the notation P (k, l), we have
omitted the precision p because it was fixed]. Since we are interested in
meaningful segments, we will only consider the case

λ = k

lp
= k′

lp′ > 1.

We then have to study the function p �→ B(l, λlp,p) and check that it is
decreasing. This will be computed with the large-deviation estimate.

PROPOSITION 11. If we consider the large-deviation estimate of log B(l, k,p)

(see also Theorem 3), given by

G(l, λlp,p) = −l

(
λlp

l
log

λlp

lp
+

(
1 − λlp

l

)
log

1 − λlp/l

1 − p

)
,

then G(l, k,p) < G(l, k′,p′).

PROOF. We can easily prove that the function

p �→ λp logλ + (1 − λp) log
1 − λp

1 − p

is increasing (for λ > 1). Consequently, p �→ G(l, λlp,p) decreases. �

The consequences of Proposition 11 are as follows:
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• If the observed alignment at precision p′ < p is meaningful, then the “original”
alignment at precision p is more meaningful.

• The previous argument shows that we must always take the precision as coarse
as possible.

REMARK. A natural question is: is p �→ B(l, λlp,p) also decreasing?

8. Applications and experimental results. In all the following experiments,
the direction at a pixel of an image is computed on a 2 × 2 neighborhood with
the method described in Section 2.1 (q = 2), and the precision used is p = 1/16.
The algorithm used to find the meaningful segments is the following. For each
one of the four sides of the image, we consider for each pixel of the side the lines
starting at this pixel, and having an orientation multiple of π/200. On each line, we
compute the meaningful segments. For each segment, let l be its length counted in
independent pixels (which means that the real length of the segment is 2l). Then,
among the l points, we count the number k of points having their direction aligned
with the direction of the segment (with precision p). Finally, we compute P (k, l):
if it is less than ε/N4, we say that the segment is ε-meaningful. Notice that P (k, l)

can simply be tabulated at the beginning of the algorithm using the relation

P (k + 1, l + 1) = pP (k, l) + (1 − p)P (k + 1, l).

It must be made clear that we applied exactly the same algorithm to all presented
images, which have very different origins. The only parameter of the algorithm is
precision. We fixed it equal to 1/16 in all experiments; this value corresponds
to the very rough accuracy of 22.5 degrees; this means that, for example, two
points can be considered as aligned with, say the 0 direction, if their angles
with this direction are up to ±11.25 degrees. It is clear that these bounds are
very rough, but in agreement with the more pessimistic estimates for vision
accuracy in psychophysics and with numerical experience as well. Moreover, in
all experiments, we only keep the meaningful segments having in addition the
property that their endpoints have their direction aligned with that of the segment.

IMAGE 1 [Pencil strokes (see Figure 3)]. This digital image was first drawn
with a ruler and a pencil on a standard A4 white sheet of paper, and then scanned
into a 478×598 digital image (left); note that a blur effect (about two pixels wide)
is introduced by the scanner. Two pairs of pencil strokes are aligned on purpose.
We display in the first experiment all ε-meaningful segments for ε = 10−3 (middle
image). Three phenomena occur, which are very apparent in this simple example,
but will be perceptible in all further experiments.

1. Too-long meaningful alignments. We commented on this above; clearly,
the pencil stroke boundaries are very meaningful, thus generating larger
meaningful segments which contain them.
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FIG. 3. Pencil strokes image. Left: the original image. Middle: the ε-meaningful alignments
for ε = 10−3. Right: maximal meaningful alignments.

2. Multiplicity of detected segments. On both sides of the strokes, we find several
parallel lines (reminder: the orientation of lines is modulo 2π ). These parallel
lines are due to the blur introduced by the scanning process. Classical edge
detection theory would typically select the best, in terms of contrast, of these
parallel lines.

3. Lack of accuracy of the detected directions. We do not check that the directions
found along a meaningful segment are distributed on both sides of the line
direction. Thus, it is to be expected that we detect lines which are actually
slanted with respect to the edge’s “true” direction. Typically, a blurry edge will
generate several parallel and more or less slanted alignments. It is not the aim
of the actual algorithm to filter out this redundant information; indeed, we do
not know at this point whether the detected parallel or slanted alignments are
due to an edge or not: this must be the object of a more complex algorithm.
Everything indicates that an edge is not an elementary phenomenon in gestalt.

We display in the second experiment for this image all maximal meaningful
segments (right image), which shows for each stroke two bundles of parallel lines
on each side of the stroke.

IMAGE 2 [Uccello’s painting (see Figure 4)]. This image (left) is a result of the
scan of Uccello’s painting “Presentazione della Vergine al tempio” (from the book
L’opera completa di Paolo Uccello, Classici dell’arte, Rizzoli). The size of this
image is 467 × 369. The right image displays all maximal ε-meaningful segments
found with ε = 10−6. Notice how maximal segments are detected on the staircase
in spite of the occlusion by the child up the stairs. All remarks made in Image 1
apply here (parallelisms due to the blur, etc.).
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FIG. 4. Uccello’s painting. Left: the original image. Right: maximal ε-meaningful segments
for ε = 10−6.

IMAGE 3 [The church of Valbonne (Figure 5, left)]. On the right, we display
the set of maximal ε-meaningful segments of the original image for ε = 10−3. We
can again here make the same remarks as for Images 1 and 2.

FIGURE 6. We first add Gaussian white noise with standard deviation 50
to the original “pencil strokes” image (which has mean value 238 and standard
deviation 17.7); thus, this corresponds to a signal-to-noise ratio (SNR) of 0.35. In
the middle of Figure 6, we display the maximal ε-meaningful alignments for ε = 1:
there are no false detections (except one segment which is too long) and on the
right of Figure 6, we display the maximal ε-meaningful alignments for ε = 100:

FIG. 5. Left: the original “church of Valbonne” image (source: INRIA). Right: maximal
ε-meaningful alignments found for ε = 10−3.
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FIG. 6. Left: the pencil strokes image corrupted by additive Gaussian noise with standard
deviation 50, yielding a signal-to-noise ratio of 0.35. Middle: the maximal ε-meaningful alignments
for ε = 1 (no false detection found). Right: the maximal ε-meaningful alignments for ε = 100 (one
false detection occurs at the bottom left).

one observes a false detection (at the bottom left). This experiment shows that the
choice of ε is sharp.

9. Discussion, comparison with related works and conclusions. In this
discussion, we start by comparing the results and method presented here with
Stewart’s seminal work. In continuation, we shall enlarge the discussion and focus
it on the main question: the relationship to variational methods and high-level
methods. We shall finally mention several extensions of this work.

The method we have presented in this paper can be viewed as a systematization
of Stewart’s MINPRAN method [34]. The method was presented as a new
paradigm, but applied to the three-dimensional (3D) alignment problem. It is worth
describing the method to explain what we added to it. Stewart’s data are l points
disseminated in a 3D cube. His question is: how to find planes along which those
dots accumulate, that is, 3D alignments? When a hypothesis of 3D alignment on a
plane P is generated, let us call r the distance to the plane and consider the event:
“at least k points among the l randomly fall at a distance less than r from P .”
The probability of the event is, calling z0 the maximal distance to the plane and
setting p = r/z0,

B(l, k,p) =
l∑

i=k

(
l

i

)
pi(1 − p)l−i .

Then, for a given plane P , Stewart computes the minimal probability of alignment
over all r’s, that is,

H(P, l) = min
r

B

(
l, kP,r ,

r

z0

)
,
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where kP,r is the number of observed dots at distance less than r from P .
A number S of hypothesized planes being fixed, “MINPRAN accepts the best fit
from S samples as correct if

min
1≤j≤S

H(Pj , l) < H0,

where H0 is a threshold based on the probability P0 that the best fit to l uniformly
distributed outliers is less than H0. Intuitively, P0 is the probability MINPRAN
will hallucinate a fit where there is none. Thus, for a user-defined value of P0 (e.g.,
P0 = 0.05) we establish our threshold value H0. . . . To make the analysis feasible,
we assume the S fits and their residuals are independent. Strictly speaking, this
assumption is not correct since the point set is the same for all fits. It is reasonable
for relatively small values of S. . . . Doing this requires several parameters to be
specified by the user. These parameters. . . are the estimated maximum fraction
of true outliers. . . , the minimum number of points to be allowed in a fit, and the
estimated maximum number of correct fits.”

We see that Stewart’s method starts exactly as we propose. Stewart actually
addresses but does not solve the two problems we intended to overcome. One
is the generation of the set of samples, which generates in Stewart’s method at
least three user parameters, and the second one is the severe restriction about
the independence of samples. We actually solved both difficulties simultaneously
by introducing the number of samples as an implicit parameter of the method
(computed from the image size and Shannon’s principles) and by replacing in all
calculations the “probability of hallucinating a wrong event” by the “expectation
of the number of such hallucinations,” namely, what we call the number of false
alarms. The application of our method to Stewart’s problem is briefly explained,
in the 2D case, in [8].

The method we presented here can be viewed as a complement to the so-called
“Hough transform” in image analysis (see [20]). Let us first describe the basic
Hough transform. We assume that the image under analysis is made up of dots
which may create aligned patterns or not. We then compute for each straight
line in the image the number of dots lying on the line. The result of the Hough
transform is then a map associating with each line its number of dots. Then “peaks”
of the Hough transform may be computed: they indicate the lines which have
more dots. Which peaks are significant? Clearly, a threshold must be used. For
today’s technology, this threshold is generally given by a user or learned. The
work of Kiryati, Eldar and Bruckstein [17] and Shaked, Yaron and Kiryati [32]
is, however, very close to what we develop here: these authors prove by large-
deviation estimates that lines in an image detected by the Hough transform could
be detected as well in an undersampled image without increasing significantly the
false alarm rate. They view this method as an accelerator tool, while we develop it
here as a geometric definition tool. Actually, in a slightly different framework, our
results of Section 5.2 arrive at the same conclusion.
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The presence of ε and p = 1/n in our definitions seems to contradict our notion
of an a priori knowledge-free theory. Now, it does not, since we have proved that
the ε-dependency of meaningfulness is low (it is, in fact, a log ε-dependency). Our
term ε-meaningful is related to the classical p-significance in statistics; as we have
seen, we must use expectations in our estimates and not probabilities. We refer
to [6] for a complete discussion of this definition. Concerning p, one can, as has
been done in an application of our work by Almansa, Desolneux and Vamech [1],
proceed as follows: these authors consider q possible values for p, test them all
and simply divide ε by q . In that way, no a priori knowledge on the precision p is
required.

Algorithms of Computer Vision belong to two classes. Many are application
directed and contain a lot of a priori knowledge. They are usually classified as
high-level vision algorithms, as opposed to low-level vision algorithms. Low-level
vision algorithms assume, as in gestalt theory, that some general principles can
deliver basic structures of images (see [21]). For instance, the Hough transform
belongs to low-level vision. Now, in many papers, a priori knowledge is used even
to find basic structures such as curves and boundaries (see the papers by Sha’Ashua
and Ullman [31] and Yuille, Coughlan, Wu and Zhu [36], the extension field of
Guy and Medioni [13] and the Parent–Zucker curve detector [26]). These methods
actually contain parameters which are fixed by the user according to some a priori
knowledge of the type of images. These methods do not yield an existence proof
for the found structures.

Of course, the variational framework is well adapted to high-level vision. The
general idea is to minimize with respect to the model M a functional of the kind

F(M,u0) + R(M),

where u0 is the given image defined on a domain � ⊂ R
2, F(M,u0) is a

fidelity term and R(M) is a regularity term containing the a priori knowledge.
Let us give two examples: the Mumford–Shah model (see [24] and [25]) and the
Bayesian model (see [12]). Another possibility, which turns out to be a significant
improvement of Bayesian methods, is the minimal description length (MDL)
method introduced by Rissanen [28] and first applied in image segmentation by
Leclerc [18]. If the task is to recognize, say fire, water, clouds and grass, it is clear
that the meaningfulness method developed here is not relevant and we clearly
need a priori knowledge, learned or explicitly given in a Bayesian model. Now,
the texture discrimination problem, namely, the question of whether grass and
clouds look the same or not, might be treated by meaningfulness arguments. To
summarize, what we propose here has nothing to do with “real world” object
recognition, but only with the detection of basic structures.

Notice that all of the work described in the present paper does not address
at all the restoration problem. Indeed, the restoration problem assumes, like the
variational methods, a prior on the class of images, on the noise, on the blurring
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kernel and so on. Chu, Glad, Godtliebsen and Marron [3] have formulated an
important and practical problem: how to smooth the noise out of image data
while at the same time preserving unsmooth features such as jumps, spikes and
edges? This is also addressed by Qiu [27] who proposes fitting discontinuous
regression surfaces in the presence of noisy data. The a priori model for the image
is a piecewise C1 function. We can also mention the paper of Rudin, Osher and
Fatemi [30] and the seminal paper by Donoho and Johnstone [9]. All of these
papers address restoration of a signal with an a priori functional model (Besov,
piecewise C1, . . . ) in the presence of (known) noise.

Since the submission of the present paper, new applications supporting the
generality of the method presented here have been developed. We have defined
in a similar framework several gestalts as maximal meaningful events, namely,
meaningful edges and boundaries in [7], maximal meaningful histogram modes
and meaningful spatial groups of objects (the so-called “proximity” gestalt) in [8].
Cao [2] applied the very same method to detect “good curves” in the sense of
gestalt theory.

APPENDIX

PROOF OF LEMMA 3. We first write the Beta integral in terms of the Gamma
function ∫ 1

0
tx−1(1 − t)y−1 dt = 	(x)	(y)

	(x + y)
.

Owing to (7), this yields

B(r, l) = 	(l + 1)

	(rl)	((1 − r)l + 1)

∫ p

0
xrl−1(1 − x)(1−r)l dx.(16)

We now use the expansion

d log	(x)

dx
= −γ − 1

x
+

+∞∑
n=1

(
1

n
− 1

x + n

)
,(17)

where γ is Euler’s constant. Using (16) and (17), we obtain

1

B

∂B

∂l
= −γ − 1

l + 1
+

+∞∑
n=1

(
1

n
− 1

l + 1 + n

)

− r

[
−γ − 1

rl
+

+∞∑
n=1

(
1

n
− 1

rl + n

)]

− (1 − r)

[
−γ − 1

(1 − r)l + 1
+

+∞∑
n=1

(
1

n
− 1

(1 − r)l + 1 + n

)]

+
∫ p

0 (r logx + (1 − r) log(1 − x))xrl−1(1 − x)(1−r)l dx∫ p
0 xrl−1(1 − x)(1−r)l dx

.
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The function x �→ r logx + (1 − r) log(1 − x) is increasing on ]0, r[, and we have
p < r , so ∫ p

0 (r logx + (1 − r) log(1 − x))xrl−1(1 − x)(1−r)l dx∫ p
0 xrl−1(1 − x)(1−r)l dx

≤ r logp + (1 − r) log(1 − p).

Then

1

B

∂B

∂l
≤ 1

l
+

+∞∑
n=1

(
r

rl + n
+ 1 − r

(1 − r)l + n
− 1

l + n

)
+ r log p + (1 − r) log(1 −p).

Now, let us consider the function

f :x �→ r

rl + x
+ 1 − r

(1 − r)l + x
− 1

l + x
,

defined for all x > 0. Since 0 < r ≤ 1, we have rl + x ≤ l + x and (1 − r)l + x ≤
l + x, so that f (x) ≥ 0 and

f ′(x) = − r

(rl + x)2 − 1 − r

((1 − r)l + x)2 + 1

(l + x)2 ≤ 0.

We deduce that, for N an integer larger than 1,

N∑
n=1

f (n) ≤
∫ N

0
f (x) dx.

A simple integration gives∫ N

0
f (x) dx = r log

(
1 + rl

N

)
+ (1 − r) log

(
1 + (1 − r)l

N

)
− log

(
1 + l

N

)

− r log r − (1 − r) log(1 − r).

Finally,

+∞∑
n=1

(
r

rl + n
+ 1 − r

(1 − r)l + n
− 1

l + n

)
≤ −r log r − (1 − r) log(1 − r),

which yields

1

B

∂B

∂l
≤ 1

l
− r log r − (1 − r) log(1 − r) + r log p + (1 − r) log(1 − p). �
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