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ABSTRACT In this chapter, we review briefly the theory of edge detec-
tion and its non local version, the “snake”, or “active contour” theory. The
snakes are curves minimizing locally a contrast and smoothness energy in
the image. We show that simpler and simpler models have emerged and we
support the idea that a very recent class of models proposed by Kimmel
and Bruckstein is actually optimal. The snake energy simply is an average
contrast across the curve, the contrast being measured as a function g of
the image gradient through the snake, u,. We discuss, however, this last
model from two points of views : the shape of the contrast function g and
the experimental blunders due to the varying contrast along the sought for
boundary. This leads us to propose a very particular form of the contrast
function in the mentioned snake model, as close as possible to a threshold
function of the gradient. Eventually, we show by arguments and experi-
ments that the resulting snakes simply coincide with the well contrasted
level lines of the image. This is shown in two ways : first, we prove that
all meaningful level lines of the image hardly move by the snake evolution
equation and second that if we evolve snakes by their energy, they tend to
follow well contrasted level lines. For a sake of completeness, we give all
formal computations needed for deriving the main models, their evolution
equation and steady state equation. Also, the very simple direct curve en-
ergy minimization which we use for experiments is described. It does not
actually use the “level set method” of Osher and Sethian. Indeed, the big
claimed advantage of these methods is to deal with topology changes of the
snake during the minimization process. If, as we sustain, the snakes can be
replaced in most practical cases by level lines, the topological changes are
simply handled by using their nested inclusion tree.

1 Introduction

It seems to be as useful as ever to discuss the way salient boundaries, or
edges, can be computed in an image. In the past 30 years, many methods
have been proposed and none has imposed itself as a standard. All have
in common a view of “edginess” according to which an edge is a curve
in the image across which the image is contrasted. Hildreth and Marr [?]
proposed to define the boundaries in a grey level image u(z, y) as lines of
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points where the Laplacian

Ju Ou

crosses zero. This was based on the remark, true for a one-dimensional
function u(z), that points with the highest gradient satisfy u'(z) = 0.
Haralick [?] improved this a lot by simply proposing as “edge points” the
points where the magnitude of the gradient |Du| attains a maximal value
along gradient lines. An easy computation shows that such points (z,y)
satisfy D?u(Du, Du)(z,y) = 0, where we take as a notation

%u 2%u du
2. _ 9c2 950 | ez
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dydx dx? En
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then A(&,¢) = av? + 2bvw + cw?. Thus, in the following, we shall talk
about Hildreth-Marr’s and Haralick’s edge points respectively. The Haral-
ick’s edge points computation was proved by Canny [?] to be optimal for
“step edges” under a Gaussian noise assumption. Now, image analysis aims
at global structures. Edge points are from that point of view a poor basis
for the further building up of geometric structures in image perception.
This is why edge detection methods have evolved towards “boundary de-
tection” methods, i.e. methods which directly deliver curves in the image
along which the gradient is, in some sense, highest.

There is agreement about the following criteria : if the image contrast
along a curve is high, so much the better. If in addition such a contrasted
curve is smooth, its “edginess” is increased. The requirement that the curve
be smooth must be tempered, however, since simple objects can be ragged
or have corners.

and if

Let us give some notations. A smooth curve in the image will be denoted
by 7(s), a one to one map from some real interval into the image plane.
Unless otherwise specified, s is an Euclidean parameterization, which means
by definition that

17 (s)] = 1.
We shall denote by L(7) the length of . When v = (2, y) is a vector, we

set v+ = (—y, z), a vector orthogonal to v. The unit tangent vector to the
curve is 7/(s) and we set

i(s) =7'(s)",

a vector normal to the curve . We finally consider

7" (s) = Curv(y(s)), (1.1)
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which is a vector normal to the curve whose magnitude is proportional
to its curvature. If Curv((s)) is bounded, the curve behaves locally as a
circle with radius 1/|Curv(y(s))| and is therefore smooth. Thus, if some
privilege has to be given to smooth curves, one is led to define an “edge”
as a curve y(s) such that

[ aputz(s)has
[0,L(v)]

is minimal (g being any decreasing function), and such that

[ asicun)hds
[0,L(v)]

is minimal. Both requirements can be combined in a single energy func-
tional : the Kass-Witkin-Terzopoulos “snake” original model [?], where the
minimum of

L) L)
/0 a(|Dulx(s)]))ds + C / (a+|Curv(3(s)ds  (12)

is sought for. According to this formulation, a snake must be as smooth as
possible and have a contrast as strong as possible.

This model has been generally abandoned for the derived “geodesic
snakes” [?]. This model proposed a geometric form of the snakes functional,
where the minimum of

L)
/0 o(|Du((s)]))ds (1.3)

is sought for. Since g > 0, this last functional looks for a compromise be-
tween length and contrast and yields a well contrasted curve with bounded
curvature. Notice that if g(0) > 0, which is usual, the first term also gives
a control on the length of the snake, and therefore actually forces the cur-
vature to be bounded. Notice also that the minimization process therefore
tends to decrease the length and forces the snake to shrink, which is not
exactly what is wished !

This may explain why Fua and Leclerc [?] proposed to simply minimize,
for edge detection, the average functional

A [ siutan) (19
g(|Du(~v(s)|))ds. 1.4
L(v) Jo
Here again, g is decreasing. Minimizing this functional amounts to finding
a curve in the image with, so to say, maximal average contrast. One the
main advances in the formulation adopted in [?] and [?] is the reduction of
the number of model parameters or functions to a single one : the contrast
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function g. The Fua-Leclerc model is in our opinion better since it focuses
only on contrast and is therefore apparently no more a hybrid combination
of contrast and smoothness requirements.

Now, all above mentioned models were in back with respect to the first
edge detectors, defined in the beginning of the seventies. Indeed, the Mon-
tanari [?] and Martelli [?] original boundary detection models were more
accurate in one aspect : instead of |Du(y(s))|, they used as contrast indi-
cator a discrete version of

uns) = 9(s) = Dl (s)) (s) (15)

that is, the contrast of the image across the curve . At a point v(s), we
can see that wu,(s) is larger if the magnitude of the gradient, |Du(y(s))],
is larger, but also if this the gradient is as much as possible normal to
the curve. Clearly, the above Kass, Witkin, Terzopoulos, the Fua-Leclerc
and the Caselles-Kimmel-Sapiro contrast measures are worse at that point
: they roughly measure only the size of the gradient independently of the
orientation of the curve.

As a general remark on all variational snakes, we must also notice that if
g is nonnegative, which is usual, the best snake in the energetical sense is
reduced to a single point at which the maximum magnitude of the gradient
of the image is attained. Thus, in all cases, local minima of the snake energy
are sought for. This is why no unique definition of good boundaries exist.
They usually depend upon :

e the initial position of the snake,
e the variance of the usual preliminary smoothing of the gradient,

e the form of the contrast function g.

Recently, Kimmel and Bruckstein [?] [?] made several important ad-
vances on the formulation of edge detectors and the snakes method, which
we shall discuss, and push a bit further in this chapter. We can summarize
the Kimmel-Bruckstein results as follows.

e Maximizers of the contrast along ~, fOL(W) un(s)ds satisfy Au(y(s)) =
0, provided u,, does not change sign along the curve. This yields a
variational interpretation of Hildreth-Marr edges.

e Active contours can more generally be performed by maximizing a
nonlinear function of contrast, E(y) = fOL(W) g(un(s))ds, where g is
even and increasing, a good example being g(¢) = |¢|. This is ba-
sically the energy (??) but where the isotropic contrast indicator
|Du(y(s))| is replaced by the better term u,(s) = Du(y(s)).7i(s)
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used in Montanari-Martelli. The case g(t) = ¢? was actually consid-
ered earlier, in the founding Mumford-Shah paper [?]. More precisely,
Mumford and Shah considered the minimization of

L(v)
E, = / v —u, (3)2 ds,
0

but they discovered that this functional has no minimizers.

Also, Kimmel and Bruckstein consider maximizing the average con-
trast, namely

= [ stunls) (1)

E'y:—/ g(un(s))ds, 1.6
L(v) Jo

where g is some increasing function. We then get an improved version

of the Fua-Leclerc functional.

All this looks good and fine : the energy functional is simpler, it
does not enforce a priori smoothness constraints and it measures the
real contrast.

e The evolution equation towards an optimum boundary can be written
in much the same way as in the geodesic snake method.

e In [?], it is also shown that the Haralick operator can receive a global
variational snake interpretation. In order to give this interpretation,
let us define a (non local) orientation at each point xg of the image
plane in the following way : we consider the level line {x,u(x) =
u(xo)} passing by xo and we set O(x) = +1 if the level line surrounds
x + eDu(x) for € > 0 small enough, O(x) = —1 otherwise (all level
lines are supposed to be closed and compact ; this can be ensured
(e.g.) by taking u = —oo outside the image domain). Call Q(y) the
domain surrounded by a Jordan curve v and consider the functional

L(v)
E(v) :/0 O('y(s))un(s)ds—//ﬂ( )O(x)|Du(x)|curv(u)(x)dx.

Maximizing the first term means finding a curve across which the
image u has maximal contrast. As Kimmel and Bruckstein show, the
second term is a topological complexity measure of the image inside
the curve : when ~ is a level line, this term is exactly 27 times the
number of hills and dips of the image, weighted by their heights.
Jordan curves along which D?u(Du, Du) = 0 are critical curves for
the preceding functional.

Our purpose here is to :
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e Explain in detail some of the above mentioned results. In particular,
we shall discuss the main point left out, namely the shape of ¢ in
(??) and prove that not all g’s are convenient. More precisely, we
shall prove that the form of g is roughly fixed if one wants to avoid
errors in the snake method due to disparities of contrast along the
snake.

e Prove that in a normal quality image, all snakes without reverse con-
trast can be defined as a subset of the level lines of the image. To be
more precise, we shall show that a simple selection of the level lines
of the image, by choosing the best contrasted level lines in the level
line tree of the image, gives back all perceptually expected contours.
This evidence will be given by showing that when we try to maximize
average contrast of the locally best contrasted level lines of the im-
age by moving them as initial curves to the Kimmel-Bruckstein snake
method, the curves do not move in general.

2 Curve flows maximizing the image contrast

In this section, we compute the Euler-Lagrange equations for the main
snake energies introduced in the introduction. This derivation is made in
[?], [?] ; we tried to make it a bit more explicit.

2.1 The first variation of the image contrast functional

Let y(s) be a closed Jordan curve parameterized by arclength, and let g be
a real even function, increasing on IRt and C? except possibly at 0 (e.g.
g(t) = [t|*). The Kimmel-Bruckstein energy is defined by

L(v)
E(y) = / 0(un(s)) ds. (1.7)

We now compute its first variation.

Proposition 1 Set h(t) = g(t) — tg'(t). The Gateaur derivative of E(y)
with respect to perturbations € is

L(v)
VEG) = [ [ () Dut () + o' ) Aua)i
0
—(h(un))'y" — h(un)Curv(y) | .cds (1.8)
We shall need the simple formal computation of the next lemma.

Lemma 1 Let A be 2 x 2 symmetric matriz. Then for all pairs of two

dimensional vectors v and w, A(v,wt) — A(vt, w) = Trace(A)v.wt.
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Proof of proposition 77

We consider a perturbation Ae of v, with A € IR and ¢ : [0, L(y)] — R2.
We want to compute

d
VeB(y) = 5 E(y +Ae) a=o-

Since |¥/(s) + Ae’(s)| has no reason to be equal to 1, s is not an arclength
parameterization of the curve s — v(s)+Ae(s). Thus, we derive the general
(non-arclength) form of E from (?7) and write

’YIJ' + /\EIJ‘

L(v)
E Ae) = D Ae).
(’7 + E) \/; g < U("}/ + 6) |,,y/_|_ )\Ell

) |¥ + Ae'| ds.

Now, since |y/| = 1 and @i = 7'%, we have

d d (7L 4aet 0

— Y + A jamo =€y and — <7 =&+ — (v.&)n.

dx /=0 DA\ +2T ) )z e
Hence,

Ve E(v)

= /0 g'(un)Du(’y).(E'J‘ — (7/.6/)7:[) + g'(un)Dzu(’y)(ﬁ, €) + g(un)y' &

| o ) Duta) e 4 b} 4+ (0) D*ul) . )

since Du(y).(v'.€)i = upy'.€" and h(t) = —ung'(un) + g(un). We notice
that all terms are assumed to be C? and are integrated on a closed contour.
Thus, we can perform all integrations by parts we wish without boundary
terms. This yields

V() = [ ) D)~ )PP
(b)) = h{un) Curv(s) & + g () D*u(2) (7 ).
We conclude by using the fact that Du(7y).e* = —Du(y)!.c and that
—D*u(y)(y',eh) + D*u(y)(,¢) = Au(y) fi.e
thanks to Lemma ?77. O

Proposition ?7 permits to deduce the mazimization gradient flow for
E(7y), namely g—z = VE(v). As usual with curve evolution, we can restrict
ourselves to depict the evolution by its velocity in the direction of the
normal 4’1+ = 7 to the curve 4.
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Corrolary 1 The curve flow mazimizing the curve contrast (17) is

9 _

T (9" (un))' (Du™ (v).70)ii + g' (un) Au(y)7 = h(un)Curv(y).  (1.9)

Notice that the term —(h(uy,))'v" disappears in the normal flow formulation
because this tangential motion does not influence the geometric motion of
~. It can instead be interpreted as a motion of the parameterization of
the curve ~(s) itself. For the same reason, we only kept the component of
Dut () normal to the curve, namely (Du? (7).7) instead of Dut(y). The
last two terms of the above expression have been left unaltered, since they
both are terms orthogonal to the tangent to the curve, +'.

A special case of (?7) is obtained when g(t) = |¢|. In this case, we have
h(t) = 0 and the normal flow equation boils down to

& = (¢ () (DUt ()7 + o e Au). (110)

If u, has constant sign on 7, i.e. if u does not reverse contrast along =,
we have g'(u,) = sign(u,) = £1 and therefore (¢'(u,))’ = 0. Thus, the
equation becomes

aa—z = sign(un ) Au(y)7. (1.11)

Thus, one obtains a wvariational interpretation of the Hildreth-Marr edge
detector. Those edges can be obtained as steady states for a boundary
contrast mazrimizing flow.

Proposition 2 (Kimmel-Bruckstein) The curves of an image which are
local extrema of the contrast E(y) = fv |un| satisfy A(y(s)) = 0 and are
therefore Hildreth-Marr edges, provided u,, does not change sign along the
curve.

2.2 A parameterless edge equation

Following Fua and Leclerc [?] and Kimmel and Bruckstein [?], we now
consider a second, probably better, definition of a boundary as a closed
curve along which the average contrast is maximal. Thus, we consider the

energy
L(y)
Fly) = ﬁ / o(un) ds = %) (1.12)

where L(7) is the length of y. Again, we can compute the first variation of
F with respect to C! perturbations of 4, which yields

VP () = 7 (VeB0) = FOVLL()
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d L) L) L)
V.L(y) = ﬁ /0 |[v' + Ae'| ds = /0 v = —/0 Curv(y).c.

/A=0

Thus, we can again write an evolution equation for the average contrast
maximizing flow,
g—z = ((9' (un)) (Dt (4).7) + g' (un) Au(y))7 + (F(3) = h(un))Curv(y).
(1.13)
If we again consider the important case where the sign of u, is constant
along v and if we choose g(t) = [t|, we obtain, since g¢'(t) = sign(t),

g—z = sign(un ) Au(y)7 + F(y)Curv(y). (1.14)

The steady states of the preceding equation yield an interesting equilibrium
relation, if we notice that F(y) is nothing but the average contrast along
the boundary.

We get what we can qualify a parameterless edge or image boundary
equation, namely

sign(u, ) Au(y(s))7 + F(y)Curv(y(s)) =0 (1.15)

(this equation is derived in [?, ?]). Notice that in this equation, F (%) is a
global term, not depending upon s. The preceding equation is valid if Du.7l
does not change sign, which means that we observe no reverse contrast
along 7. Recall also that Curv(y) = ¥"(s) (s being the arclength). Since
F(y) > 0, Equation (?7?) is well posed and its implementation is very
similar to the implementation of the geodesic snake equation, which also
has a propagation term and a curvature term :

0y _

5 = J()Curv(y) — (Df.A)7, (1.16)

where here f(x) denotes an “edge map”, i.e. a function vanishing (or close to
0) where u has edges. Typically, f(x) = (1 + |Du(x)|)~!. We can interpret
the geodesic snake equation by saying that the “snake” is driven by the
second term Df.7i towards the smaller values of f, while the first term
roughly is a length minimizing term, but tuned by f. Thus, the snake
tends by this term to shrink, but this smoother slows down where f is
small, namely in a neighborhood of high gradient points for u.

2.8 Numerical scheme

We now describe in detail an numerical scheme implementing the maxi-
mization of (??). For a non-Euclidean parameterization v(p) : [a,b] — R?,
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the energy we want to maximize writes
b 7 L
e (DuBRy) @)l dp

1217 (p)] dp

Rather than writing the Euler equation for (?7) and then discretizing it, we
discretize the energy and compute its exact derivative with respect to the

F(v) (1.17)

discrete curve. Let us suppose that the snake is represented by a polygonal
curve M;..M, (either closed or with fixed endpoints). For the curve length,
we can take

L:ZHAZH with Ai: i+1_Mi~

Now the discrete energy can be written F' = %, with
E=Y gt)lAi,
i

A
ti=w; - ———,  w; = Dut(Q;), and Q; =
[l Al

Deriving E with respect to M, we obtain

M; + M4
—

1
Vi F = ¢ (kaE—FkaL)
with
_ Bk-r Ap
lAs—all (A&’
VB = v +vi_1 + 21 — 2,
1

vi = 50 (t) D((Du™)") () As,

VL

A
2z =g (t)w; + h(tz)m

and h(t) = g(t) — tg’(t). Note that

DD = Dy w) = (i ).

“Uyy  Uay

Numerically, we compute Du at integer points with a 3 x 3 finite differ-
ences scheme, and D?u with the same scheme applied to the computed
components of Du. This introduces a slight smoothing of the derivatives,
which counterbalances a little the strong locality of the snake model. These
estimations at integer points are then extended to the whole plane using a
bilinear interpolation.

To compute the evolution of the snake, we use a two-steps iterative
scheme.
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FIGURE 1. An initial contour drawn by hand on the lichen image (curve upright,
in white on left image) and its final state (curve on the bottomright of left image,
in black) computed with the average contrast snake model (??) for g(t) = |t|. The
evolution allows an tmportant improvement in the location of the boundary of the
object, as illustrated by the energy gain (360%, from 8.8 to 40.8). This shows the
usefulness of the snake model as an interactive tool for contour segmentation.

1. The first step consists in a reparameterization of the snake according
to arclength. It can be justified in several ways : aside from bringing
stability to the scheme, it guarantees a geometric evolution of the
curve, it ensures an homogeneous estimate of the energy, and it pre-
vents singularities to appear too easily. However, we do not prevent
self-intersections of the curve.

2. The second step is simply a gradient evolution with a fixed step. If
(M]*); represents the (polygonal) snake at iteration n and (M]); its

2
renormalized version after step 1, then we set

]Wz-n'l'1 = Mzn + (5VMnF.

A numerical experiment realized with this scheme is shown on Figure 77.

2.4 Choice of the function g

In this part, we shall show that the shape of the contrast function g is
extremely relevant. Let us consider the average contrast functional (77),
where g is an increasing function. This energy, which has to be maximized,
is an arclength weighting of the contrast g(u,) encountered along the curve.
In particular, it increases when the curve is lengthened by “adding” a high-
contrasted part, or when it is shortened by “removing” a low-contrasted
part (here, the qualities “high” and “low” are to be considered with respect



12 Agnes Desolneux, Lionel Moisan, Jean-Michel Morel

to the average contrast of the curve). Of course, these operations are not
so easy to realize, because the snake must remain a Jordan curve, but we
shall see now that this remark has consequences on the local and the global
behavior of the snake.

It is all the more easy to increase the energy by shrinking the curve
in low-contrasted parts that the function ¢ increases more quickly. This
means that if we want to be able to reach object contours presenting strong
variations of contrast, we must choose a slowly increasing function for g.
Let us illustrate this by a little computation, associated to the numerical
experiment of Figure 77.

FIGURE 2. Influence of the function g for a synthetic image. The snake model is
applied to a synthetic image made of a bright square on a ramp background. Upleft:
original contour (can be detected as the unique mazimal meaningful boundary of
this image, see Section 77 ). Upright: for g(t) = |t|, the snake collapses into a
“flat curve” enclosing the left side of the square (some intermediate states are
shown). Downleft: for g(t) = |t|°®°, the snake converges to an intermediate state.
Douwnright: for g(t) = |t|°°, the snake hardly moves, which means that the initial
contour is nearly optimal despite the large difference of contrast between the left
stde and the right side of the square. Contours with large variations of contrast

are more likely to be optimal curves for low powers, for which the energy is less
sensitive to outliers.

Consider a white square with sidelength 1 superimposed to a simple
background image whose intensity is a linear function of z, varying from
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black to light gray. If a and b are the values of u, on the left and right
sides of the square (we assume that b < a), and if v is the boundary of the
square, we have

F(y) = %, with L =4 and F = g(a) + g(b) +2/01g(a+ (b— a)t) dt.

Now we would like to know if v is an admissible final state of the snake
model (that is a local maximum of F') or not. If we shrink a little the curve
~ by “cutting” by € > 0 the two right corners at 45, we obtain a curve 7.
whose energy is

E. .
Fe(y) = -, with L. =L —de+ 22

€

and E, = F — 2/1 g(a—l— (b— a)t) dt —2eg(b) = E — 4eg(b) + o(e).

1—¢

Since ¢ may be arbitrary small, we know that 4 cannot be optimal as soon

as
L-L.  E-FL,

I ~ T E
for € > 0 small enough. Using the previous estimates of E. and L. and the
fact that £ > 3¢(b) + g(a), we can see that this condition is satisfied for
€ > 0 small enough as soon as

4—22 4g(b)
4 3g(b) +g(a)’

which can be rewritten

gla) _ 2+3V2
g(b) = 2-+2
Hence, the ratio g(a)/g(b) must be kept (at least) below that threshold,

and as small as possible in general in order to avoid the shrinkage of low-
contrasted boundaries. If we choose a power function for g (that is g(¢) =

= 10.65...

[t|*), this is in favor of a small value of «, as illustrated on Figure ?7.

More generally, all this is in favor of a function g increasing as slowly
as possible, that is to say almost constant. On the other hand, it is well
known that all digital images have a level of noise (e.g. quantization noise
to start with) which makes unreliable all gradients magnitudes below some
threshold #. This leads us to the following requirement.

Flatness contrast requirement for snakes. The contrast function for
snake energy must satisfy, for some 0

o ift <0, g'(t) is high ;
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o ift>0,g(t) is flat and g(t) — g(o0), with g(c0) < co.

In the next section, we describe a way to compute f as a meaningfulness
threshold for the gradient, in function of the length of the curve.

Now we shall focus on the special family of power functions g(t) = |¢|“.
For any of these functions, the snakes method is zoom invariant, namely,
up to time scale change, the snake’s evolution remains the same when we
zoom both the image and the initial contour. Conversely, this identity of
snake evolutions leads to ask that the energy of a snake and the one of its
zoomed counterpart are proportional. It is easy to prove that this implies
that g(At) = f(A)g(t) for some function f(A). If g is continuous and even,
this implies that g(¢t) = C|¢|*.

According to the requirements above, we can predict the following be-
haviors.

Experimental predictions. Consider the average contrast energy

L(v)
FO)= g [ stw)ds wih g = (L18)

v
o When « is large, all snakes present straight parts and shrink from the
parts of the boundaries with weaker gradient.

o The smaller « is the better : snakes will be experimentally more stable
and faithful to perceptual boundaries when o — 0.

We checked these predictions on several numerical experiments. First,
in a synthetic case (a white “comb” on a ramp background), we can see
the evolution of the snake (Figure ??) and its final state in function of
the power a (Figure 77). As expected, some teeth of the comb are not
contrasted enough to be kept for & = 1, and a smaller value is required to
have an accordance between the snake and the perceptual boundary.

Our predictions remain true when the snake model (?7?) is applied to the
“real” image of a bird (see Figure 77) : as expected, we notice that the low
contrasted parts of the contour are kept only when the power « is small
and replaced by straight lines when « is large.

The trend to favor high contrasted parts in the snake model, which be-
comes very strong for large powers, has some consequences on the numerical
simulations. As we noticed before, if the contrast is not constant along the
curve one can always increase the average contrast (?7) by lengthening the
curve in the part of the curve which has the highest contrast. If the curve ~
was not required to be a regular Jordan curve, there would be no nontrivial
local maximum of the functional F(v), since the curve could “duplicate”
itself infinitely many times in the highest contrasted part by creating cusps.
This formation of cusps was proven by Mumford and Shah [?] in the case
g(t) = t2. In the model we presented, cusps may be avoided because the
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FIGURE 3. Evolution of the snake for g(t) = |t|. The snake model is applied to
a synthetic image made of a bright comb on a ramp background. Upleft: original
contour (detected as the unique mazimal meaningful boundary of this image).

FIGURE 4. Influence of the function g for a synthetic image. The snake model
18 applied to a synthetic image made of a bright comb on a ramp background.
g(t) = |t]°* (left), g(t) = |t|°°° (right), g(t) = |t| (bottomright of Figure ??).

duplication of the curve cannot be realized directly for a geometric curve
evolution, which consists in infinitesimal normal deformations. In general,
the creation of a cusp with a normal curve evolution will not be compati-
ble with the need for the energy to increase during the evolution, so that
in many cases the snake will not be able to fold itself during the energy
maximization process.

Numerically, this effect is more difficult to avoid since the curve does
not evolve continuously but step by step, so that the energy gap required
to develop a cusp may be too small to stop the process. This is especially
true for large powers, for which self-foldings are often observed in practice
(though, of course, this phenomenon depends a lot on the time step used in
the gradient maximization scheme). In the bird image for example, one may
notice a “thick part” of the curve for & = 3 (Figure ?7), which corresponds
to such a self-folding. The numerical experiment of Figure 77, which is in
some way the “real case” analog of Figure 77, shows that curve duplication
may also be attained continuously in the energy maximization process (the
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FIGURE 5. Contour optimization in function of g for the bird image. An initial
contour (upleft) was first designed by hand. Then, it was optimized by the snake
model for different functions g : g(t) = [t|°° (upright), g(t) = |t| (downleft), and
g(t) = |t|* (downright). As the power increases, the snake becomes more sensi-
tive to edges with high contrast and smooth (or cut) the ones with low contrast.
(original bird image from F. Guichard)

FIGURE 6. Zoom on the curve duplication that appears for g(t) = [¢[> in the
highest contrasted part (rectangle drawn on the bottomright image of Figure 77).
The discretization of the snake (black curve) is shown by white dots.

initial region enclosed by the snake collapses into a zero-area region enclosed
by a “flat curve”).

In the next section, we introduce a boundary detector which we recently
developed and which we shall prove to be theoretically close and experimen-
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FIGURE 7. Influence of the function g in the self-folding phenomenon. The initial
boundary (left) is a mazimal meaningful boundary of the lichen image. Like for
the square image (see Figure 77), the contrast along this curve present strong
vartations. The snake collapses into a self-folded “flat curve” with two cusps for

g(t) = |t| (middle) but remains a Jordan curve for g(t) = \/|t| (right).

tally almost identical to the Kimmel-Bruckstein detector, when g satisfies
the flatness requirement.

3 Meaningful boundaries

In very much the same way as different species of animals can converge
to the same morphology by the way of the evolutive pressure!, two image
analysis structures with very different origins, namely the variational snakes
and the maximal meaningful level lines, arrive at almost exactly the same
numerical results. Level lines for image representation have been proposed
in [?] as an efficient contrast invariant representation of any image. This
representation stems from Mathematical Morphology [?] where connected

In Australia, some marsupials have evolved into a wolf-like predator species : the
Tasmanian Thylacine (Thylacinus cynocephalus).
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components of level sets are extensively used as image features and indeed
are contrast invariant features (level lines are nothing but the boundaries
of level sets). Level lines are closed curves, like the snakes. They are a
complete representation of the image. Also, they have a tree structure which
permits a fast computation, the so called Fast Level Set Transform [?].
Also, they satisfy the easy topological change requirement : their topology
changes effortless at saddle points and permit level lines to merge or to
split numerically by just evolving their level. The only drawback of level
lines is : they are many. Let us now describe a pruning algorithm proposed
in [?] to reduce drastically the number of level lines without changing the
image aspect and having thus an image representation with only a few
closed curves. The result consists roughly in giving all essential (in some
information theoretical sense) best contrasted level lines. Two examples of
this zero-parameter method are given in Figures 77 and ?77.

FIGURE 8. The maximal meaningful boundaries of the lichen image (superim-
posed in grey, see Figure 77).

Let u be a discrete image, of size N x N. We consider the level lines at
quantized levels. The quantization step is chosen in such a way that level
lines make a dense covering of the image: if e.g. this quantization step is 1
and the natural image ranges 0 to 255, we get such a dense covering of the
image. A level line can be computed as a Jordan curve contained in the
boundary of an upper (or lower) level set with level A,

Yo ={x, u(x) <A} and x* = {x, u(x) > A}.
It can also be given a simple linear spline description if one uses a bilinear

interpolation : in that case, level lines with level A are solved by explicitly
solving the equation u(x) = A [?].
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FIGURE 9. The maximal meaningful boundaries of the bird image (superimposed
in grey, see Figure 77).

For obvious stability reasons, we consider in the following only level lines
along which the gradient is not zero. What follows is a very fast summary
of the theory developed in [?].

Let £ be a level line of the image u. We denote by [ its length counted
in number of “independent” points. In the following, we will consider that
points at a geodesic distance (along the curve) larger than 2 are indepen-
dent. Let x3, X2,...%x; denote the [ considered points of L. For a point
x € L, we will denote by ¢(x) the contrast at x. It is defined by

¢(x) = |Du|(x), (1.19)

where Du is computed by a standard finite difference on a 2 x 2 neighbor-
hood. For p > 0, we consider the event : “for all i = 1.1, e(x;) > u, i.e
each point of L has a contrast larger than p”. From now on, all computa-
tions are performed in the Helmholtz framework explained in [?]: we make
all computations as though the contrast observations at x; were mutually
independent. If the gradient magnitudes of the ! points were independent,
the probability of this event would be Ple(x1) > u] - Ple(z2) > ] - ... -
Pe(x;) > p] = H(p)', where H(p) is the empirical probability for a point
on any level line to have a contrast larger than p. Hence, H(p) is given by
the image itself,

H(p) = - #0x/ 1Dul(x) > ), (1.20)

where M is the number of pixels of the image where Du # 0. In order
to define a meaningful event, we have to compute the expectation of the
number of occurrences of this event in the observed image. Thus, we first
define the number of false alarms.
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Definition 1 (Number of false alarms) Let £ be a level line with length
l, counted in independent points. Let p be the minimal contrast of the points
x1,...x; of L. The number of false alarms of this event is defined by

NF(L) = Nu - [H(w)], (1.21)
where Ny is the number of level lines in the tmage.

Notice that the number Ny of level lines is provided by the image itself.
We now define e-meaningful level lines.

Definition 2 (e-meaningful boundary) A level line £ with length | and
minimal contrast i is e-meaningful if NF(L) < e.

We can summarize the method in the following way : not all level lines are
meaningful ; some can cross flat regions where noise predominates. In order
to eliminate such level lines; we first compute the minimum gradient, g, on
a given level line £ with length [. We then compute the probability of the
following event : a level line in a white noise image with the same gradient
histogram as our image has contrast everywhere above u. This probability
is the probability of a “contrasted level line happening by chance”. We
then compute the false alarm rate, namely the product of this probability
by the number of tested level lines. If the false alarm rate is less than e,
the level line is said to be e-meaningful. In practice, one takes ¢ = 1, since
one does not care much having on the average one wrong among the many
meaningful level lines.

Because of the image blur, contrasted level lines form bundles of nearly
parallel lines along the edges. We call interval of level lines a set of level
lines such that each one is enclosed in only one, and contains only another
one.

Definition 3 We say that a level line is maximal meaningful if it is mean-
ingful and if its number of false alarms is minimal among the level lines in
the same interval.

With this definition, one should retain in the simple case of a contrasted
object again a uniform background, a single maximal meaningful level line.
In all experiments below, we only display maximal meaningful level lines.

4 Snakes versus Meaningful Boundaries
In this section, we would like to compare the snake model and the mean-
ingful boundaries model (abbreviated MB).

In terms of boundary detection, the MB model has one serious advantage :
it is fully automatic. Comparatively, realizing boundary detection with the
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snake model is much more difficult and an automatic algorithm (that is,
with no parameters to set) seems unreachable. Indeed, there are so many
ways to change the large set of local maxima of the snake functional that an
important user interaction is needed to ensure a good compromise between
false detections and missed contours. Among the parameters to set are :

e the function g (though, as we shown before, not many possibilities
are left to obtain reliable detections, and one can choose g(t) = [t|*
with some small &) ;

e the initial contour, which represents a high number of parameters.
Starting with a set of fixed contours (e.g. a covering of the image
with circles with different radii) requires a real multiscale strategy
and a strong smoothing of the image since the actual contours may
be quite different from the ones fixed a prior;

e the parameters of the numerical scheme used to implement the snake,
including the gradient step and the above-mentioned initial smooth-
ing, required for non-interactive detection. The set of maxima of
the discrete snake functional depends heavily on them in general,
as shown (for the gradient step) on Figure 77.

FIGURE 10. Sensitivity of the snake model to numerical parameters (here the
time step used for the gradient descent). The snake model (g(t) = || )is applied for
several values of the gradient step 6 : 6 =1 (left), 6 = 3 (Figure 72, downright),
8 =10 (right). Due to the huge number of local mazima of the snake functional,
the final result is very sensitive to the numerical implementation of the model, in
particular to 4.

In terms of boundary optimization, that is the refinment of a raw auto-
matically detected or interactively selected contour, the snake model does
not bring very substantial improvements compared to the MB model. We
checked this by applying the snake model to the contours detected by the
MB model (Figure ?7 and ?7?). The very little changes brought in these
experiments by the snake evolution prove that the curves detected with the
MB model are very near to local maxima of the snake model. This is not
very surprising since first, the curves delivered by the MB model are level
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FIGURE 11. Optimization of a maximal meaningful boundary by the snake
model. The contour optimization brought by the snake model (here g(t) = |t|)
is generally low when the contour is initialized as a contrasted level line (here
a magimal meaningful boundary). In this experiment, the total energy is only
increased by 17%, from 34.6 to 40.6.

lines (that is, curves for which Du is colinear to the normal 7 of the curve
at each point), and second, the MB criterion is, like the snake model, based
on gradient maximization. This is all the more true that as we discussed
previously, the function ¢ used in the snake model should be close to the
gradient thresholding (that is, a step function selecting points with large
enough gradient) realized by the MB model.

In our opinion, these experiments tend to prove that the snake model
should be rather used interactive contour selection and optimization than
for automatic boundary detection, for which the meaningful boundaries
method appears to be much more practicable.
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FIGURE 12. Optimization of all maximal meaningful boundaries (g(t) = 1/|t]).
The “objects” in this image are well detected with the maximal meaningful bound-
artes (in white). The optimization of these contours brought by the snake model
(in black) is quite low, as shown by the little gain obtained for the total energy
(sum of the energy of each curve) :7%, from 35.9 to 38.5.
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