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Abstract

In the Wertheimer programme there are two kinds of organizing laws. The first kind
are grouping laws which, starting from atomic and local data, recursively construct larger
groups in the perceived image. Each grouping law focuses on a single quality (color, shape,
direction, ... ). The second kind are principles governing the collaboration and conflicts
of gestalt laws. We explain why and how the Wertheimer programme can be translated
into a Computer Vision programme. This translation is not straightforward, since Gestalt
theory did not address two fundamental matters : image sampling and image information
measurements. Using them, we show that a quantitative version of Kanizsa’s “masking in
texture” can lead to numerical simulations of several grouping laws. As illustration, we
display numerical experiments on several digital images. Analyzing successes and failures of
these experiments, we conclude that Computer Vision is currently facing exactly the same
challenges as were discussed in Gestalt theory, namely the collaboration and conflicts between
grouping laws, and the masking issue.

1 Introduction

The geometric Gestalt theory started in 1921 with Max Wertheimer’s founding paper [31]. In
its 1975 last edition, the Gestalt Bible Gesetze des Sehens by Wolfgang Metzger [22] gave a
broad overview of the results of a fifty years research. At about the same date, Computer Vision
was an emerging new discipline, at the meeting point of Artificial Intelligence and Robotics.
The foundation of signal sampling theory by Claude Shannon [28] was already twenty years old,
but computers were able to deal with images with some efficiency only at the beginning of the
seventies. Two things are noticeable:

e Computer Vision did not use at first the Gestalt theory results : the founding book of David
Marr [21] involves much more neurophysiology than phenomenology. Also, its programme
and the robotics programme [12] founded their hopes on binocular stereo vision. This
was in total contradiction to, or ignorance of the results explained at length in Metzger’s
chapters on Tiefensehen. Indeed, these chapters demonstrate that binocular stereo vision
is a parent pauvre in human depth perception.

e Conversely, Shannon’s information theory does not seem to have influenced Gestalt re-
search, as far as we can judge from Kanizsa’s and Metzger’s books. The only bright
exception is Attneave’s attempt [2] to give a shape sampling theory adapted to shape
perception.



This lack of initial interaction is surprising. Indeed, both disciplines have attempted to answer
the following question : how to arrive at global percepts (let them be visual objects of gestalts!)
from the local, atomic information contained in an image 7

In this paper, we shall propose an analysis of the Wertheimer programme adapted to com-
putational issues. We shall distinguish two kinds of laws :
- the practical grouping laws (like vicinity or similarity), whose aim it is to build up partial
gestalts;
- the gestalt principles like masking or articulazione senza resti, whose aim it is to operate a
synthesis between the partial groups obtained by the elementary grouping laws. We shall review
some recent methods proposed by the authors of the present paper in the computation of partial
gestalts (groups obtained by a single grouping law). These results show that

e there is a simple computational principle (the so-called Helmholtz principle), inspired from
Kanizsa’s masking by texture, which allows one to compute any partial gestalt obtainable
by a grouping law (section 4). Also, a particular use of the articulazione senza resti, which
we call maximality, yields optimal partial gestalts ;

e this computational principle can be applied to a fairly wide series of examples of partial
gestalts, namely alignments, clusters, boundaries, grouping by orientation, size or grey
level ;

e the experiments yield evidence that in natural world images, partial gestalts often collab-
orate.

We push one of the experiments to prove that the partial gestalt recursive building up can be
led up to the third level (gestalts built by three successive grouping principles). In contrast,
we also show by numerical counterexamples that all partial gestalts are likely to lead to wrong
scene interpretations. As we shall see, the wrong detections are always explainable by a conflict
between gestalts. We eventually show some experiment suggesting that Minimal Description
Length principles [26] may be adequate to resolve some of the conflicts between gestalt laws.

Our plan is as follows. We start in section 2 with an account of Gestalt theory, centered
on the initial 1923 Wertheimer programme. In section 3, we focus on the problems raised by
the synthesis of groups obtained by partial grouping laws : we address the conflicts between
these laws and the masking phenomenon, which we discuss in the line of Kanizsa. In section
4, we point out several quantitative aspects implicit in Kanizsa’s definition of masking and
show that one particular kind of masking, Kanizsa’s masking by texture, suggests computational
procedures. Such computational procedures are explained in section 5. We end this paper in
section 6 by the discussion of a list of numerical experiments on digital images.

2 Grouping laws and gestalt principles

2.1 Grouping laws

Gestalt theory starts with the assumption of active “grouping” laws in visual perception (see
[14], [31]). These groups are identifiable with subsets of the retina. We shall talk in the fol-
lowing of “points” or groups of points which we identify with spatial parts of the planar rough

"We shall write gestalt and treat it as an English word when we talk about gestalts as groups. We maintain
the German uppercase for Gestalt theory.



percept. In image analysis, we shall identify them as well with the points of the digital image.
Whenever points (or previously formed groups) have one or several characteristics in common,
they get grouped and form a new, larger visual object, a gestalt. The list of elementary group-
ing laws given by Gaetano Kanizsa in Grammatica del Vedere page 45 and following [14] is
vicinanza, somiglianza, continuita di direzione, completamento amodale, chiusura, larghezza
constante, tendenza alla convessita, stimmeltria, movimento solidale, esperienza passata, that is :
vicinity, similarity, continuity of direction, amodal completion, closure, constant width, tendency
to convexity, symmetry, common motion, past experience. This list is actually very close to the
list of grouping laws considered in the founding paper of Wertheimer [31]. These laws are sup-
posed to be at work for every new percept. The amodal completion, one of the main subjects
of Kanizsa’s books, is, from the geometric viewpoint, a variant of the good continuation law?.
Figure 1 illustrates many of the grouping laws stated above. The subjects asked to describe
briefly such a figure give an account of it as “three letters X” built in different ways.

Figure 1: The building up of gestalt : X-shapes. Fach one is built up with branches which are
themselves groups of similar objects; the objects, rectangles or circles are complex gestalts, since they
combine color constancy, constant width, convexity, parallelism, past experience ete.

Most grouping laws stated above work from local to global. They are of mathematical
nature, but must actually be split into more specific grouping laws to receive a mathematical
and computational treatment :

e Vicinity for instance can mean : connectedness (i.e. spots glued together) or clusters
(spots or objects which are close enough to each other and apart enough from the rest to
build a group). This vicinity gestalt is at work in all sub-figures of figure 2.

e similarily can mean : similarity of color, shape, texture, orientation, ... Each one of these
gestalt laws is very important by itself (see again figure 2).

e continuity of direction can be applied to an array of objects (figure 2 again). Let us add
to it alignments as a grouping law by itself (constancy of direction instead of continuity of
direction).

e constant width is also illustrated in the same figure 2 and is very relevant for drawings and
all kinds of natural and artificial forms.

e Notice, in the same spirit, that convezity, also illustrated, is a particularization of both
closure and continuity of direction.

2The good continuation principle has been extensively adressed in Computer Vision, first in [23], more re-
cently in [27] and still more recently in [11]. A recent example of computer vision paper implementing “good
continuation”, understood a “constant curvature”, is [32].



e past experience : In the list of partial gestalts which are looked for in any image, we can
have generic shapes like circles, ellipses, rectangles, and also silhouettes of familiar objects
like faces, cats, chairs, etc.
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Figure 2: Illustration of gestalt principles. From left to right and top to bottom : color constancy
+ proxzimity, similarity of shape and similarity of texture ; good continuation ; closure (of a curve)
; convezity ; parallelism ; amodal completion (a disk seen behind the square); color constancy ; good
continuation again (dots building a curve) ; closure (of a curve made of dots) ; modal completion : we
tend to see a square in the last figure and its sides are seen in a modal way (subjective contour). Notice
also the texture similarity of the first and last figures. Most of the figures involve constant width. In this

complex figures, the sub-figures are identified by their alignment in two rows and their size similarity.

All of the above grouping laws belong, according to Kanizsa, to the so called processo pri-
mario (primary process), opposed to a more cognitive secondary process. Also, it may of course
be asked why and how this list of geometric qualities has emerged in the course of biological evo-
lution. Brunswick and Kamiya [4] were among the first to suggest that the gestalt grouping laws
were directly related to the geometric statistics of the natural world. Since then, several works
have addressed from different points of views these statistics and the building elements which
should be conceptually considered in perception theory, and/or numerically used in Computer
Vision [3], [25], [10].

The grouping laws usually collaborate to the building up of larger and larger objects. A
simple object like a square, whose boundary has been drawn in black with a pencil on a white
sheet, will be perceived by connectedness (the boundary is a black line), by constant width (of
the stroke), convexity and closure (of the black pencil stroke), parallelism (between opposite
sides), orthogonality (between adjacent sides), again constant width (of both pairs of opposite
sides).

We must therefore distinguish between global gestalt and the partial gestalts. The square is
a global gestalt, but it is the synthesis of a long list of concurring local groupings, leading to
parts of the square endowed with some gestalt quality. Such parts we shall call partial gestalts.

Notice also that all grouping gestalt laws are recursive : they can be applied first to atomic
inputs and then in the same way to partial gestalts already constituted. Let us illustrate this by
an example. In figure 3, the same partial gestalt laws, namely alignment, parallelism, constant
width and proximity, are recursively applied not less than six times : the single elongated dots
first aligned in rows, these rows in groups of two parallel rows, these groups again in groups of
five parallel horizontal bars, these groups again in groups of six parallel vertical bars. The final
groups appear to be again made of two macroscopic horizontal bars. The whole organization of
such figures is seeable at once.



Figure 3: Recursiveness of gestalt laws : here, constant width and parallelism are applied at different
levels in the building up of the final group not less than six times, from the smallest bricks which are
actually complex gestalts, being roughly rectangles, up to the final rectangle. Many objects can present

deeper and more complexr constructions.

2.2 Global Gestalt principles

While the partial, recursive, grouping gestalt laws do not bring so much doubt about their
definition as a computational task from atomic data, the global gestalt principles are by far more
challenging. For many of them, we do not even know whether they are properly constitutive
laws, or rather an elegant way of summarizing various perception processes. They constitute,
however, the only cues we have about the way the partial gestalt laws could be derived from
a more general principle. On the other hand, these principles are absolutely necessary in the
description of the perception process, since they should fix the way grouping laws interact or
compete to create the final global percepts, the final gestalts. Let us go on with the gestalt
principles list which can be extracted from [14]. We have :

ragruppamento secondo la direzionalita della struttura (Kanizsa ,Grammatica del Vedere, op.
cit., page 54) : inheritance by the parts of the overall group direction. This is a statement which
might find its place in Platon’s Parmenides: “the parts inherit the whole’s qualities”.

pregnancy, structural coherence, unity (pregnanza, coerenza strutturale, carattere unitario,
ibidem, page 59), tendency to mazimal regularity (ibidem, p. 60), articulation whole-parts, (in
German, Gliederung), articulation without remainder (ibidem p. 65) : These seven Gestalt laws
are not partial gestalts ; in order to deal with them from the computer vision viewpoint, one has
to assume that all partial grouping laws have been applied and that a synthesis of the groups
into the final global gestalts must be thereafter performed. Each principle describes some aspect
of the synthesis made from partial grouping laws into the most wholesome, coherent, complete
and well-articulated percept.

3 Conflicts of partial gestalts and the masking phenomenon

With the computational discussion to come in mind, we wish to examine the relationship between
two important technical terms of Gestalt theory, namely conflicts and masking.



3.1 Conflicts

The gestalt laws are stated as independent grouping laws. Now, they start from the same build-
ing elements. Thus, conflicts between grouping laws can occur and therefore conflicts between
different interpretations, that is, different possible groups in a given figure. Three cases :

a) two grouping laws act simultaneously on the same elements and give raise to two overlapping
groups. It is not difficult to build figures where this occurs, as in figure 4. In that example,
we can group the black dots and the white dots by similarity of color. All the same, we see
a rectangular grid made of all the black dots and part of the white ones. We also see a good
continuing curve, with a loop, made of white dots. These groups do not compete.

b) two grouping laws compete and one of them wins, the other one being inhibited. This
case is called masking and will be discussed thoroughly in the next section.

c) conflict : in that case, both grouping laws are potentially active, but the groups cannot
exist simultaneously. In addition, none of the grouping laws wins clearly. Thus, the figure is
ambiguous and presents two or more possible interpretations.
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Figure 4: Gestalt laws in simultaneous action without conflict : the white dots are elements of the grid

(alignment, constant width) and simultaneously participate of a good continuing curve.

A big section of Kanizsa’s second chapter [14], is dedicated to conflicts of gestalts. Their
study leads to the invention of clever figures where an equilibrium is maintained between two
conflicting gestalt laws struggling to give the final figure organization. The viewer can direct his
attention in both ways, see both organizations and perceive their conflict. A seminal experiment
due to Wertheimer 2 gives an easy way to construct such conflicts. In figure 5, we see on the left
a figure made of rectangles and ellipses. The prominent grouping laws are : a) shape similarity
(L), which leads us to group the ellipses together and the rectangles as two conspicuous groups ;
b) the vicinity law Ly, which makes all of these elements build anyway a unified cluster. Thus, on
the left figure, both laws coexist without real conflict. On the right figure instead, two clusters
are present. Each one is made of heterogeneous shapes, but they fall apart enough to enforce
the splitting of the ellipses group and of the rectangles group. Thus, on the right, the vicinity
law Ly tends to win. Such figures can be varied, by changing (e.g.) progressively the distance
between clusters until the final figure presents a good equilibrium between conflicting laws.

Some laws, like good continuation, are so strong that they almost systematically win, as is
illustrated in figure 6. In this figure, two figures with a striking axial symmetry are concatenated
in such a way that their boundaries are put in “good continuation”. The result is a different

20p. cit..



Figure 5: Conflict of similarity of shapes with vicinity. We can easily view the left hand figure as
two groups by shape similarity, one made of rectangles and the other one of ellipses. On the right, two

different groups emerge by vicinity. Vicinity “wins” against similarity of shapes.

interpretation, where the symmetric figures literally disappear. This is a conflict, but with a
total winner. It therefore enters into the category of masking.

Figure 6: A “conflict of gestalts” : two overlapping closed curves or, as suggested on the right, two
symmetric curves which touch at two points ? We can interpret this experiment as a masking of the
symmetry gestalt law by the good continuation law. (From Kanizsa, Grammatica del Vedere p 195, op.
cit.)

3.2 Masking

Masking is illustrated by a lot of puzzling figures, where partial gestalts are literally hidden
by other partial gestalts giving a better global explanation of the final figure. The masking
phenomenon is the outcome of a conflict between two partial gestalts L; and Ls struggling
to organize a figure. When one of them, L;, wins, a striking phenomenon occurs : the other
possible organization, which would result from L,, is hidden. Only an explicit comment to the
viewer can remind her of the existence of the possible organization under Ly : the parts of the
figure which might be perceived by Ly have become invisible, masked in the final figure, which
is perceived under L only.

Kanizsa considers four kinds of masking : masking by embedment in a texture ; masking by
addition (the Gottschaldt technique) ; masking by substraction (the Street technique) ; masking by
manipulation of the figure-background articulation (Rubin, many famous examples by Escher).
The first technique we shall consider is masking in texture. Its principle is : a geometrically
organized figure is embedded into a texture, that is, a whole region made of similar building
elements. This masking may well be called embeddedness as suggested by Kanizsa 4. Figure

*Vedere e pensare, op. cit., p 184
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7 gives a good instance of the power of this masking, which has been thoroughly studied by
the schools of Beck and Juslesz [13]. In this clever figure, the basis of a triangle is literally
hidden in set of parallel lines. We can interpret the texture masking as a conflict between an
arbitrary organizing law Lg and the similarity law, L. The masking technique works by multiple
additions embedding a figure F' organized under some law L, into many elements which have a
shape similar to the building blocks of F.
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Figure 7: Masking by embedding in a texture. The basis of the triangle becomes invisible as it is embedded
in a group of parallel lines. (Galli and Zama, quoted in Vedere e pensare, op. cit.).

The same proceeding is at work in figure 8. In that figure, one sees that a curve made of
roughly aligned pencil strokes is embedded in a set of many more parallel strokes.
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Figure 8: Masking by embedding in a texture again. On the right, a curve created from strokes by “good
continuation”. This curve is present, but masked on the left. We can consider it as a conflict between
Ls, “good continuation” and Ly : similarity of direction. The similarity of direction is more powerful, as

it organizes the full figure (articulazione senza resti).

In the masking by addition technique, due to Gottschaldt, a figure is concealed by addition of
new elements which create another and more powerful organization. Here, Ly and Ly can be any
organizing law. In figure 9, an hexagon is thoroughly concealed by the addition to the figure of
two parallelograms which include in their sides the initial sides of the hexagon. Noticeably, the
“winning laws” are the same which made the hexagon so conspicuous before masking, namely
closure, symmetry, convexity and good continuation.

As figure 10 shows, Ly and Ly can revert their roles. On the right, the curve obtained by
good continuation is made of perfect half circles concatenated. This circular shape is masked
in the good continuation. Surprisingly enough, the curve on the left is present in the figure on
the right, but masked by the circles. Thus, on the left, good continuation wins against the past
experience of circles. On the right, the converse occurs ; convexity, closure and circularity win
against good continuation and mask it. The third masking technique considered by Kanizsa is

substraction (Street technique), that is, removal of parts of the figure. As is apparent in figure
11, where a square is amputated in three different ways, the technique results effective only
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Figure 9: Masking by concealment (Gottschaldt 1926). The hexagon on the left is concealed in the figure
on the right, and more concealed below. The hexagon was built by the closure, symmetry, convexity gestalt
laws. The same laws are active to form the winner figures, the parallelograms.
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Figure 10: Masking of circles in good continuation, or, conversely, masking of good continuation by
closure and convexity. We do not really see arcs of circles on the left, although significant and accurate
parts of circles are present : we see a smooth curve. Conversely, we do not see the left “good” curve as
a part of the right figure. It is nonetheless present in it.

when the removal creates a new gestalt. The square remains in view in the third figure from the
left, where the removal has been made at random and is assimilable to a random perturbation.

In the second and fourth figure, instead, the square disappears, although some parts of its sides
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have been preserved.
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Figure 11: Masking by the Street substraction technique (1931), inspired from Kanizsa (Vedere e pensare

p 176, op. cit.). Parts are removed from the black square. When this is done in a coherent way, it lets
appear a new shape (a rough cross in the second subfigure, four black spots in the last one) and the square
1s masked. It is not masked at all in the third, though, where the removal has been done in a random way
and does not yields a competing interpretation.

We should not end this section without considering briefly the last category of masking
mentioned by Kanizsa, the masking by inversion of the figure-background relationship. This
kind of masking is well known thanks to the famous Escher drawings. Its principle is “the



background is not a shape” (il fondo non € forma). Whenever strong gestalts are present in
an image, the space between those conspicuous shapes is not considered as a shape, even when
it has itself a familiar shape like a bird, a fish, a human profile. Again here, we can interpret
masking as the result of a conflict of two partial gestalt laws, one building the form and the
other one, the loser, not allowed to build the background as a gestalt.

4 Quantitative aspects of Gestalt theory

In this section, we open the discussion on quantitative laws for computing partial gestalts. We
shall first consider some numerical aspects of Kanizsa’s masking by texture. In continuation, we
shall make some comments on Kanizsa’s paradox and its answer pointing out the involvement
of a quantitative image resolution. These comments lead to Shannon’s sampling theory.

4.1 Quantitative aspects of the masking phenomenon

In his fifth chapter of Vedere e pensare, Kanizsa points out that “it is licit to sustain that a
black homogeneous region contains all theoretically possible plane figures, in the same way as,
for Michelangelo, a marble block virtually contains all possible statues”. Thus, these virtual
statues could be considered as masked. This is the so called Kanizsa paradox. Figure 12 shows
that one can obtain any simple enough shape by pruning a regular grid of black dots. In order

Figure 12: According to Kanizsa’s paradoz, the figure on the right is potentially present in the figure on
the right, and would indeed appear if we colored the corresponding dots. This illustrates the fact that the
figure on the left contains a huge number of possible different shapes.

to go further, it seems advisable to the mathematician to make a count : how many squares
could we see, for example, in this figure 7 Characterizing the square by its upper left corner and
its side length, it is easily computed that the number of squares whose corners lie on the grid
exceeds 400. The number of curves with “good continuation” made of about 20 points like the
one drawn on the right of figure 12 is equally huge. We can estimate it in the following way :
we have 80 choices for the first point, and about five points among the neighbors for the second
point, etc. Thus, the number of possible good curves in our figure is grossly 80 - 520 if we accept
the curve to turn strongly, and about 80-32% is we ask the curve to turn at a slow rate. In both
cases, the number of possible “good” curves in the grid is very large.

This multiplicity argument suggests that a grouping law can be active in an image, only
if its application would not create a huge number of partial gestalts. Or, to say it in another
way, we can sustain that the multiplicity implies a masking by texture. Masking of all possible
good curves in the grid of figure 12 occurs, just because too many such curves are possible.

10



In the above figure 8 (subsection 3.2), we can repeat the preceding quantitative argument. In
this figure, the left hand set of strokes actually contains, as an invisible part, the array of
strokes on the right. This array of strokes is obviously organized as a curve (good continuation
gestalt). This curve becomes invisible on the left hand figure, just because it gets endowed in
a more powerful gestalt, namely parallelism (similarity of direction). As we shall see in the
computational discussion, the fact that the curve has been masked is related to another fact
which is easy to check on the left hand part of the figure : one could select on the left many
curves of the same kind as the one given on the right.

In short, we do not consider Kanizsa’s paradox as a difficulty to solve, but rather as an
arrow pointing towards the computational formulation of gestalt : In section 5, we shall define
a partial gestalt as a structure which is nol masked in lexture.
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Figure 13: Below, an array of roughly aligned segments. Above, the same figure is embedded into a
texture in such a way that it still is visible as an alignment. We are in the limit situation associated with
Vicario’s proposition : “is masked only what can be unmasked”.

We shall therefore not rule out the extreme masking cases, in contradiction with Vicario’s
principle “é mascherato solo cio che puo essere smascherato” (is masked only what can be un-
masked). Clearly, all psychophysical masking experiments must be close enough to the “conflict
of gestalts” situation, where the masked gestalt still is attainable when the subject’s attention
is directed. Thus, psychological masking experiments must remain close to the non masking
situation and therefore satisfy Vicario’s principle. From the computational viewpoint instead,
figures 12 and 8 are nothing but very good masking examples.

In this masking issue, one feels the necessity to pass from qualitative to quantitative argu-
ments : a gestalt can be more or less masked. How to compute the right information to quantize
this “more or less” 7 It is actually related to a precision parameter. In figure 13, we constructed
a texture by addition from the alignment drawn below. Clearly, some masking is at work and we
would not notice immediately the alignment in the texture if our attention was not directed. All
the same, the alignment remains somewhat conspicuous and a quick scan may convince us that
there is no other alignment of such an accuracy in the texture. Thus, in that case, alignment is
not masked by parallelism. Now, one can now suspect that this situation can be explained in
yvet quantitative terms : the precision of the alignment matters here and should be evaluated.
Precision will be one of the three parameters we shall use in computational gestalt.

11



4.2 Shannon theory and the discrete nature of images

The preceding subsection introduced two of the parameters we shall have to deal with in the
computations, namely the number of possible partial gestalts and a precision parameter. Before
proceeding to computations, we must discuss the rough datum itself, namely the computational
nature of images, let them be digital or biological. Kanizsa addresses briefly this problem in the
fifth chapter of Vedere e pensare, in his discussion of the masking phenomenon : “We should not
consider as masked elements which are too small to attain the visibility threshold”. Kanizsa was
aware that the amount of visible points in a figure is finite.> He explains in the same chapter
why this leads to work with figures made of dots ; we can consider this decision as a way to
quantize the geometric information.

In order to define mathematically an image, be it digital or biological, in the simplest possible
way, we just need to fix a point of focus. Assume all photons converging towards this focus are
intercepted by a surface which has been divided into regular cells, usually squares or hexagons.
Each cell counts its number of photons hits during a fixed exposure time. This count gives
a grey level image, that is, a rectangular, (roughly circular in biological vision) array of grey
level values on a grid. In the case of digital images, C.C.D. matrices give regular grids made of
squares. In the biological case, the retina is divided into hexagonal cells with growing sizes from
the fovea. Thus, in all cases, a digital or biological image contains a finite number of values on
a grid. Shannon [28] made explicit the mathematical conditions under which, from this matrix
of values, a continuous image can be reconstructed. By Shannon’s theory, we can compute the
grey level at all points, and not only the points of the grid. Of course, when we zoom in the
interpolated image it looks more and more blurry : the amount of information in a digital image
is indeed finite and the resolution of the image is bounded. The points of the grid together with
their grey level values are called pizels, an abbreviation for picture elements.

The pixels are the computational atoms from which gestalt grouping procedures can start.
Now, if the image is finite, and therefore blurry, how can we infer sure events as lines,
circles, squares and whatsoever gestalts from discrete data ? If the image is blurry,
all of these structures cannot be inferred as completely sure ; their exact location must remain
uncertain. This is crucial : all basic geometric information in the image has a precisionS. Figure
13 shows it plainly. It is easy to imagine that if the aligned segments, still visible in the figure,
are slightly less aligned, then the alignment will tend to disappear. This is easy checked with
figure 14, where we moved slightly up and down the aligned segments.

Let us now say briefly which local, atomic, information can be the starting point of com-
putations. Since every local information about a function u at a point (z,y) boils down to its
Taylor expansion, we can assume that these atomic informations are :

e the value u(z, y) of the grey level at each point (2, y) of the image plane. Since the function
w is blurry, this value is valid at points close to (z,y).

S“non sono da considerare mascherati gli elementi troppo piccoli per raggiungere la soglia della visibilita pur

potendo essere rivelati con Uausilio di una lente di ingrandimento, il che dimostra che esistono come stimol:
potenziali. E altrettanto vale per il caso inverso, nel quale soltanto con la diminuzione dell’angolo visivo e la
conseguente riduzione della grandezza degli elementi e dei loro interspazi (mediante una lente o la visione a
grande distanza) € possibile vedere determinate strutture.”

1t is well known by gestaltists that a right angle “looks right” with some +3 degrees precision, and otherwise
does not look right at all.
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Figure 14: When the alignment present in figure 13 is made less accurate, the masking by texture becomes
more efficient. The precision plays a crucial role in the computational gestalt theory outlined in the next

section.
e the gradient of u at (z,y), the vector
du Ou
Du(z,y) = [ o=, 22 :
wten) = (5o 50) e

e the orientation at (z,y),

. 1 Ju Ju
Orient(z) = Dt (—%7 0_30) (2, y).

This vector is visually intuitive, since it is tangent to the boundaries one can see in an
image.

These local informations are known at each point of the grid and can be computed at any point
of the image by Shannon interpolation. They are quantized, having a finite number of digits, and
therefore noisy. Thus, each one of the preceding measurements has an intrinsic precision. The
orientation is invariant when the image contrast changes (which means robustness to illumination
conditions). Attneave and Julesz [13] refer to it for shape recognition and texture discrimination
theory. Grey level, gradient and orientation are the only local information we shall retain for
the numerical experiments of the next section, together with their precisions.

5 Computing partial gestalts in digital images

In this section, we shall summarize a computational theory which permits to find automatically
partial gestalts in digital images. This theory essentially predicts perception thresholds which
can be computed on every image and give a usually clear cut decision between what is seeable as
a geometric structure (gestalt) in the image and what is not. Those thresholds are computable
thanks to the discrete nature of images. Many more details can be found in [9]. All computations
below will involve three fundamental numbers, whose implicit presence in Gestalt theory has
just been pointed out, namely

- a relative precision parameter p which we will treat as a probability ;

- a number Ny, s of possible configurations for the looked for partial gestalt. This number
is finite because the image resolution is bounded ;

- the number N of pixels of the image.

13



Of course, p and N,y will depend upon the kind of gestalt grouping law under consideration.
We can relate p and N to two fundamental qualities of any image : its noise and its blur.

5.1 A general detection principle

In [6], [7], [8], we outlined a computational method to decide whether a given partial gestalt
(computed by any segmentation or grouping method) is reliable or not. As we shall recall, our
method gives absolute thresholds, depending only on the image size, permitting to decide when
a given gestalt is perceptually relevant or not.

We applied a general perception principle which we called Helmholtz principle (figure 15).
This principle yields computational grouping thresholds associated with each gestalt quality. It
can be stated in the following generic way. Assume that atomic objects Oy, O, ... 0, are
present in an image. Assume that k of them, say Oy, ... ,0Of, have a common feature, say,
same color, same orientation, position etc.. We are then facing the dilemma : is this common
feature happening by chance or is it significant and enough to group Oy, ..., Of ? In order to
answer this question, we make the following mental experiment : we assume a priori that the
considered quality has been randomly and uniformly distributed on all objects Oy, ... ,0,. Then
we (mentally) assume that the observed position of objects in the image is a random realization
of this uniform process. We finally ask the question : is the observed repartition probable or
not ? If not, this proves a contrario that a grouping process (a gestalt) is at stake. Helmholtz
principle states roughly that in such mental experiments, the numerical qualities of the objects
are assumed to be equally distributed and independent. Mathematically, this can be formalized

by

Definition 1 (c-meaningful event [6]) We say that an event of type “such configuration of
geomelric objecls has such property” is e-meaningful if the expectalion of the number of occur-
rences of this event is less than € under the uniform random assumption.

As an example of generic computation we can do with this definition, let us assume that the
probability that a given object O; has the considered quality is equal to p. Then, under the
independence assumption, the probability that at least k objects out of the observed n have this

Blp,n, k) = i (Z)pi(l - )"

i=k

quality is

t.e. the tail of the binomial distribution. In order to get an upper bound for the number of
false alarms, i.e. the expectation of the number of geometric events happening by pure chance,
we can simply multiply the above probability by the number of tests we perform on the image.
This number of tests Ny, corresponds to the number of different possible positions we could
have for the searched gestalt. Then, in most cases we shall consider in the next subsections, a
considered event will be defined as e-meaningful if

NFA = Neong-B(p,n, k) <e.

We call in the following the left hand member of this inequality the “number of false alarms”
(NFA). The number of false alarms of an event measures the “meaningfulness” of this event : the
smaller it is, the more meaningful the event is. We refer to [6] for a complete discussion of this
definition. To the best of our knowledge, the use of the binomial tail, for alignment detection,
was introduced by Stewart [30].
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5.2 Computation of six partial gestalts

Alignments of points.

Points will be called aligned if they all fall into a strip thin enough, and in suflicient number. This
qualitative definition is easily made quantitative. The precision of the alignment is measured
by the width of the strip. Let S be a strip of width a. Let p(S) denote the prior probability for
a point to fall in S, and let k(S) denote the number of points (among the Af) which are in S.

The following definition permits to compute all strips where a meaningful alignment is observed
(see figures 15 and 18).

Figure 15: An illustration of Helmholtz principle : non casual alignments are automatically
detected by Helmholtz principle as a large deviation from randomness. Left, 20 uniformly randomly
distributed dots, and 7 aligned added. Middle : this meaningful (and seeable) alignment is detected as a
large deviation from randomness. Right : same alignment added to 80 random dots. The alignment is no
more meaningful (and no more seeable). In order to be meaningful, it would need to contain at least 11
points.

Definition 2 ([9]) A strip S is e-meaningful if
NE(S) = N, - B(p(S), M, k(S)) < e,

where N is the number of considered strips (one has Ny ~ 2w (R/a)?, where R is the half-
diameter of Q and a the minimal width of a strip).

Let us give immediately a summary of several algorithms based on the same principles, most
of which use, as above, the tail of the binomial law. This is done in table 1, where we summarize
the (very similar) formulae permitting to compute the following partial gestalts : alignments (of
orientations in a digital image), contrasted boundaries, all kinds of similarities for some quality
measured by a real number (grey level, orientation, ... ), and of course the most basic one,
treated in the last row, namely the vicinity gestalt.

Alignments in a digital image

The first row of table 1 treats the alignments in a digital image. As we explained in subsection
4.2, an orientation can be computed at each point of the image. Whenever a long enough
segment occurs in the image, whose orientations are aligned with the segment, this segment is
perceived as an alignement. We consider the following event : “on a discrete segment of the
image, joining two pixel centers, and with length [, at least k& independent points have the same
direction as the segment with precision p.” The definition of the number of false alarms is given
in the first row of the table and an example of the alignments, in a digital aerial image, whose
number of false alarms is less than 1 is given in figure 16.
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GROUP LOOKED FOR

MEASUREMENTS

NUMBER OF FALSE ALARMS

Alignment of directions on a seg

ment [6]

a discrete
with points
Nyquist distance (i.e.
2)

segment
at

k: number of aligned points

{: number of points on the segment

l\rsegments ° B(p7 l7 k)

Afsegments = ATS
N: number of pixels in the image
p = 1/16 (angular precision)

Contrasted edges and boundaries [7]

alevel line (or a piece
of) with points at
Nyquist distance (i.e.
2)

{4 : minimum contrast (gradient norm)
along the curve

l: length of the curve

Nicvel lines - H(,U)l

H is the empirical cumulative distri-
bution of the gradient norm on the
image

Similarity of a uniform scalar quality (grey level, orientation, etc.) [9]

a group of objects
having a scalar qual-
ity ¢ such that a <
gsb

k: number of points in the group

M: total number of objects

b—a-+1
L

L(L+1)
2

~B< ,M,k>

L: number of values (g € {1..L})

Similarity of a

scalar quality with decreasing distribution (area, length, etc.) [9]

a group of objects
having a scalar qual-
ity g such that a <
gsb

k: number of points in the group

M: total number of objects

L(L+1)
—=—m

ax B
peED

(Z p(i), M, k)

i=a

L: number of values (g € {1..L})
D: set of decreasing distributions on

1.1}

Alignment of points (or objec

ts) [9]

a goup of points

falling in a strip (re-

p: relative area of the strip

Natrips - B(p, M, k)

. losed b k: number of points falling in the strip M: total number of points
glon enclosec by two The strips are quantized in position,
parallel lines) width and orientation
Vicinity : clusters of points (or objects) [9]
M
MY ; i
fVregions z (1 . ) 01(1 — 0 — O'I)M ‘
. . ; ?
¢ . o: relative area of the region i=k
a group of points . ) . )
o':  relative area of the thick low- | M: total number of points

falling in a region
enclosed by a low-
resolution curve

resolution curve

k: number of points falling in the region

Nregions = NquZL : the low resolu-
tion curves are quantized in resolu-
tion (g), thickness (r), location (),

and bounded in length (L).

Table 1: List of gestalts computed so far
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Maximal meaningful gestalts and articulazione senza resti

On this example of alignments, we can address a problem encountered by the mathematical
formalization of gestalt. Assume that on a straight line we have found a very meaningful segment
S. Then, by enlarging slightly or reducing slightly S, we still find a meaningful segment. This
means that meaningfulness cannot be a univoque criterion for detection, unless we can point
out the “best meaningful” explanation of what is observed as meaningful. This is done by the
following definition, which can be adapted as well to meaningful boundaries [7], meaningful
edges [7], meaningful modes in a histogram and clusters [9].

Definition 3 ([8]) We say that an e-meaningful geomelric structure A is mazimal meaningful

if

e it does not contain a strictly more meaningful structure : VB C A, NF(B) > NF(A).

e it is not contained in a more meaningful structure : VB D A, B# A, NF(B) > NF(A).
It is proved in [8] that maximal structures cannot overlap, which is one of the main theoretical

outcomes validating the above definitions. This definition formalizes the articulazione senza
resti principle in the case of a single grouping law.

Figure 16: Two partial gestalts, alignments and boundaries. Left : original aerial view (source :
INRIA), middle : mazimal meaningful alignments, right : mazimal meaningful boundaries.

Boundaries
One can define in a very similar way the “boundary” grouping law. This grouping law is never
stated explicitly in gestaltism, because it is probably too obvious for phenomenologists. From
the computation viewpoint it is not, at all.

The definition of the number of false alarms for boundaries involves again two variables :
the length [ of the level line, and its minimal contrast g, which is interpreted as a precision. An
example of boundary detection is given on figure 16.

Similarity
The third row of table 1 addresses the main gestaltic grouping principle : points or objects
having a feature in common are being grouped, just because they have this feature in common.
Assume k objects Oy, ..., Ok, among a longer list Oy, ..., Oy, have some quality ¢ in common.

Assume that this quality is actually measured as a real number. Then our decision of whether the
grouping of Oy, ..., Oy is relevant must be based on the fact that the values ¢(Oy), ..., ¢(Ok)
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make a meaningfully dense interval of the histogram of ¢(O1), ..., ¢(Oar). Thus, the automatic
quality grouping is led back to the question of an automatic, parameterless, histogram mode
detector. Of course, this mode detector depends upon the kind of feature under consideration.
We shall consider two paradigmatic cases, namely the case of orientations, where the histogram
can be assumed by Helmholtz principle to be flat, and the case of the objects sizes (areas) where
the null assumption is that the size histogram is decreasing (see figure 17).

i 00 0
10 1 00 0
10 b 00 0 0
il 00 0 i

1200 1400 1600

60 a0 20 o 20 a0 60 80 0 50 100 150 200 250

Figure 17: Collaboration of gestalts. The objects tend to be grouped similarly by several different
partial gestalts. First row : original DNA image (left) and its mazimal meaningful boundaries (right).
Second row, left : histogram of areas of the meaningful blobs. There is a unique mazimal mode (256-
416). The outliers are the double blob, the white background region and the three tiny blobs. Second row,
middle : histogram of orientations of the meaningful blobs (computed as the principal azis of each blob).
There is a single mazimal meaningful mode (interval). This mode is the interval 85-95. It contains 28
objects out of 32. The outliers are the white background region and three tiny spots. Second row, right :
histogram of the mean grey levels inside each block. There is a single marimal mode containing 30 objects
out of 32, in the grey level interval 74-130. The outliers are the background white region and the darkest
spot.

Thus, the third and fourth row of our table permit to detect all kinds of similarity gestalt :
objects grouped by orientation, or grey level, or any perceptually relevant scalar quality.

5.3 Study of an example

We are going to perform a complete study of a digital image, figure 17, involving all computa-
tional gestalts defined in table 1. The analyzed image is a common digital image. It is a scan
of photograph and has blur and noise. The seeable objects are electrophoresis spots which have
all similar but varying shape and color and present some striking alignments. Actually, all of
these perceptual remarks can be recovered in a fully automatic way by combining several partial
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gestalt grouping laws.
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Figure 18: Gestalt grouping principles at work for building an “order 3” gestalt (alignment of
blobs of the same size). First row : original DNA image (left) and its mazimal meaningful boundaries
(right). Second row : left, barycenters of all meaningful regions whose area is inside the only mazimal
meaningful mode of the histogram of areas ; right, meaningful alignments of these points.

First, the contrasted boundaries of this electrophoresis image are computed (above, right). Notice
that all closed curves found are indeed perceptually relevant as they surround the conspicuous
spots. Other many possible boundaries in the noisy background have been ruled out and remain
“masked in texture”. Let us apply a second layer of grouping laws. This second layer will use
as atomic objects the blobs found at the first step. For each of the detected boundaries, we
compute three qualities, namely

a) the area enclosed by the boundary, whose histogram is displayed on the top left of figure
17. There is a unique maximal mode in this figure, which actually groups all and exactly the
blobs with similar areas and rules out two tiny blobs and a larger one enclosing two different
blobs. Thus, almost all blobs get grouped by this quality, with the exception of two tiny spots
and a double spot.

b) the orientation of each blob, an angle between —% and 7. This histogram (figure 17, bottom,
middle) again shows a single maximal mode, again computed by the formula of the third row of
table 1. This mode appears at both end points of the interval, since the dominant direction is

7 and these values are identified modulo 7. Thus, about the same blobs as in b) get grouped

by their common orientation.

c) the average grey level inside each blob : its histogram is shown on the bottom right of
figure 17. Again, most blobs, but not all get grouped with respect to this quality.

A further structural grouping law can be applied to build subgroups of blobs formed by align-
ment. This is illustrated in figure 18 (bottom, left), where the meaningful alignments are found.
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This experiment illustrates the usual strong collaboration of partial gestalts : most salient ob-
jects or groups come to sight by several grouping laws.

6 The limits of every partial gestalt detector

The preceding section argued in favor of a very simple principle, Helmholtz principle, applicable
to the automatic and parameterless detection of any partial gestalt, in full agreement with our
perception. In this section, we shall show by commenting briefly several experiments that tout
n’est pas rose : there is a good deal of visual illusion in any apparently satisfactory result provided
by a partial gestalt detector on a digital image. We explained in the former section that partial
gestalts often collaborate. Thus, in many cases, what has been detected by a partial gestalt will
be corroborated by another one. For instance, boundaries and alignments in the experiment 16
are in good agreement. But what can be said about the experiment of figure 19 7 In this cheetah
image, we have applied the alignment detector explained above. It works wonderfully on the
grass leaves when they are straight. Now, we also see some unexpected alignments in the fur.
These alignments do exist : these detected lines are tangent to several of the convex dark spots
on the fur. This generates a meaningful excess of aligned points on these lines, the convex sets
being smooth enough and having therefore on their boundary a long enough segment tangent
to the detected line.

Figure 19: Smooth conver sets or alignments ¢

We give an illustration of this fact in figure 20. The presence of only two circles can actually
create a (to be masked) alignment, since the circles have bitangent straight lines. In order
to discard such spurious alignments, the convexity (or good continuation) gestalt should be
systematically searched when we look for alignments. Then, the alignments which only are
tangent lines to several smooth curves, could be inhibited.

We should detect as alignment what indeed is aligned, but only under the condition that the
alignment does not derive from the presence of several smooth curves ... This statement can
be generalized : no gestalt is just a positive quality. The outcome of a partial gestalt detector is
valid only when all other partial gestalts have been tested and the eventual conflicts dealt with.

The same argument applies to our next experimental example, in figure 21. In that case, a
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Figure 20: Alignment is masked by good continuation and convezity : the small segments on
the right are perfectly aligned. Any alignment detector should find them. All the same, this
alignment disappears on the left figure, as we include the segments into circles. In the same
way, the casual alignments in the Cheetah fur (figure 19) are caused by the presence of many
oval shapes. Such alignments are perceptually masked and should be computationally masked !

dense cluster of points in present. Thus, it creates a meaningful amount of dots in many strips
and the result is the detection of obviously wrong alignments. Again, the detection of a cluster
should inhibit such alignment detections. We defined an alignment as “many points in a thin
strip”, but must add to this definition : “provided these points do not build one or two dense
clusters”.

100 T T T T T T T T T 100
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Figure 21: One cluster, or several alignments ?

One can reiterate the same problematic with another gestalt conflict (figure 22). In this
figure, a detector of arcs of circles has been applied. The arc of circle detection grouping law is
easily adapted from the definition of alignments in table 1. The main outcome of the experiment
is this : since the MegaWave figure contains many smooth boundaries and several straight lines,
lots of meaningful circular arcs are found. It may be discussed whether those circular arcs are
present or not in the figure : clearly, any smooth curve is locally tangent to some circle. In the
same way, two segments with an obtuse angle are tangent to several circular arcs (see figure 23).
Thus, here again, a partial gestalt should mask another one. Hence the following statement,
which is of wide consequence in Computer Vision : We cannot hope any reliable explanation of
any figure by summing up the resulls of one or several partial gestalts. Only a global synthesis,
treating all conflicts of partial gestalts, can give the correct result.

In view of these experimental counterexamples, it may well be asked why partial gestalt
detectors often work “so well”. This is due to the redundancy of gestalt qualities in most natural
images, as we explained in the first section with the example of a square. Indeed, most natural

21



Figure 22: Left : original “MegaWave” image. Right : an circular arc detector is applied to the image.
Now, this image contains many smooth curves and obtuse angles to which meaningful circular arcs are
tangent. This illustrates the necessity of the interaction of partial gestalts : the best explanation for the
observed structures is “good continuation” in the gestaltic sense, i.e. the presence of a smooth curve, or
of straight lines (alignments) forming obtuse angles. Their presence entails the detection of arcs of circles

which are not the final explanation.

or synthetic objects are simultaneously conspicuous, smooth and have straight or convex parts,
etc. Thus, in many cases, each partial gestalt detector will lead to the same group definition.
Our experiments on the electrophoresis image (figure 17) have illustrated the collaboration of
gestalt phenomenon”. In that experiment, partial gestalts collaborate and seem to be redundant.
This is an illusion which can be broken when partial gestalts do not collaborate.

Figure 23: Left : Every obtuse angle can be made to have many points in common with some long
arc of circle. Thus, an arc of circle detector will make wrong detections when obtuse angles are present
(see Figure 22). In the same way, a circle detector will detect the circle inscribed in any square and,

conversely, a square detector will detect squares circumscribing any circle.

6.1 Conclusion

We shall close the discussion by expressing some hope, and giving some arguments in favor of
this hope. First of all, gestaltists pointed out the relatively small number of relevant gestalt
qualities for biological vision. We have briefly shown in this paper that many of them (and
probably all) can be computed by the Helmholtz principle followed by a maximality argument.
Second, the discussions of gestaltists about “conflicts of gestalts”, so vividly explained in the

"Kriiger and Wérgdtter [19] gave strong statistical computational evidence in favor of a collaboration between
partial gestalt laws, namely collinearity, parallelism, color, contrast and similar motion.
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books of Kanizsa, might well be solved by a few information theoretical principles. As a good
example of it, let us mention how the dilemma alignment-versus-parallelism can be solved by
an easy minimal description length principle (MDL) [26], [8]. Figure 24 shows the problem and
its simple solution. On the middle, we see all detected alignments in the Brown image on the
left. Clearly, those alignments make sense but many of them are slanted. The main reason is
this : all straight edges are in fact blurry and therefore constitute a rectangular region where
all points have roughly the same direction. Thus, since alignment detection is made up to some
precision, the straight alignments are mixed up with slanted alignments which still respect the
precision bound. We can interpret the situation as a conflict between alignment and parallelism,
as already illustrated in figure 8.

The spurious, slanted alignments are easily removed by the application of a MDL principle :
it is enough to retain for each point only the most meaningful alignment to which it belongs.
We then compute again the remaining maximal meaningful alignments and the result (right)
shows that the conflict between parallelism and alignment has been solved. Clearly, information
theoretical rules of this kind may be applied in a general framework and put order in the
proliferation of “partial gestalts”. Let us mention an attempt of this kind in [20], where the
author proposed a MDL reformulation of segmentation variational methods ([24]).

Figure 24: Parallelism against alignment. Left, original Brown image. Middle : mazimal meaningful
alignments. Here, since many parallel alignments are present, secondary, parasite slanted alignments are
also found. Right : Minimal description length of alignments, which eliminates the spurious alignments.

This last method outlines a solution to conflicts between partial gestalts.
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