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Meaningful Alignments
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Abstract. We propose a method for detecting geometric structures in an image, without any a priori information.
Roughly speaking, we say that an observed geometric event is “meaningful” if the expectation of its occurences
would be very small in a random image. We discuss the apories of this definition, solve several of them by
introducing “maximal meaningful events” and analyzing their structure. This methodology is applied to the detection
of alignments in images.
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1. Introduction

Most theories of image analysis tend to find in a given
image geometric structures (regions, contours, lines,
convex sets, junctions, etc.). These theories generally
assume that the images contain such structures and then
try to compute their best description. The variational
framework is quite well adapted to such a viewpoint
(for a complete review, see e.g. Morel and Solimini,
1995). The general idea is to minimize a functional of
the kind

F(u, u0) + R(u),

whereu0 is the given image defined on a domainÄ ⊂
R2, F(u, u0) is a fidelity term andR(u) is a regularity
term. F and R define an a priori model. Let us give
two examples:

• The Mumford-Shah model (see Morel and Solimini,
1995), where the energy functional to be minimized
is

E(u, K ) = λ2
∫
Ä−K
|∇u|2 dx+ µλ2 length(K )

+
∫
Ä−K

(u− u0)
2 dx, (1)

whereu is the estimated image,K its discontinuity
set, and the result(u, K ) is called a “segmentation”

of u0, i.e. a piecewise smooth functionu with a set
of contoursK .
• The Bayesian model (see Geman and Geman, 1984;

Geman and Graffigne, 1986): let us denote by
Ey = (ys)s∈S the observation (the degraded image).
The aim is to find the “real” imageEx = (xs)s∈S

knowing that the degradation model is given by
a conditional probability5(Ey | Ex), and that the a
priori law of Ex is given by a Gibbs distribution
5(Ex) = Z−1 exp(−U (Ex)) (for binary images, the
main example is the Ising model). We then have to
find the M.A.P. (Maximum A Posteriori) of

5(Ex | Ey) = 5(Ey | Ex)5(Ex)
5(Ey) . (2)

Assume that5(Ey | Ex)=C exp(−V(Ex, Ey)). For exam-
ple, in the case of a Gaussian noise,

5(Ey | Ex) =
(

1

2πσ 2

)|S|
2

exp

(
− 1

2σ 2

∑
s∈S

(ys− xs)
2

)
,

finding the MAP is equivalent to seeking for the mini-
mum of the functional

V(Ex, Ey) + U (Ex). (3)

A main drawback of all the variational methods is
that they introduce normalization constants(λ, µ, . . .)
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and the resulting segmentation depends a lot upon the
value of these constants. The other point is that they
will always deliver a minimum for their functional and
so they assume that any image may be segmented (even
a white noise). Indeed, they do not yield any criterion
to decide whether segmentation is relevant or not. Of
course, the probabilistic framework leading to varia-
tional methods should in principle give a way to es-
timate the parameters of the segmentation functional.
In the deterministic framework, these parameters can
sometimes be estimated as Lagrange multipliers when
(e.g.) a noise model is at hand, like in the Rudin-
Osher-Fatemi method (see Rudin et al., 1992). It is
nonetheless easy to check that, first, most variational
methods propose a very rough and inaccurate model
for the image, second, their parameters are generally
not correctly estimated anyway, yielding to supervised
methods. Actually, we should not be fair if we claimed
that what we propose immediately yields a more re-
liable segmentation method. In fact, we only intend
to point out the possibility of checking any proposed
segmentation, by any segmentation method, from the
point of view of meaningfulness. So far, this check
will only be analysed in detail for straight boundaries:
given a segmentation performed by any other method,
we can, with the method proposed here, a posteriori
decide about the meaninfulness of straight parts of the
proposed boundaries.

Another drawback of most segmentation meth-
ods is their locality. Despite the Gestaltists theories,
they look rather for local structure. Let us mention
some nonlocal theories of image analysis: the Hough
Transform (see Maitre, 1985), the detection of glob-
ally salient structures by Sha’Ashua and Ullman (see
Sha’Ashua and Ullman, 1988), the Extension Field of
Guy and Medioni (see Guy and Medioni, 1992) and
the Parent and Zucker curve detector (see Parent and
Zucker, 1989). These methods have the same drawback
as the variational models of segmentation described
above. The main point is that they a priori suppose that
what they want to find (lines, circles, curves,. . . ) is in
the image. They may find too many or too little such
structures in the image and do not yield anexistence
proof for the found structures. As a main example, let
us describe the Hough transform. We assume that the
image under analysis is made of dots which may cre-
ate aligned patterns or not. We then compute for each
straight line in the image, the number of dots lying
on the line. In fact, the Hough transform describes a
fast algorithm to do so. The result of the Hough trans-
form is then a map associating with each line a number

of dots. Then, “peaks” of the Hough transform may
be computed: they indicate the lines which have more
dots. Which peaks are significant? Clearly, a threshold
must be used. For the today technology, this threshold
generally is given by a user or learned. The Hough
transform is nothing but a particular kind of “group-
ing”.

According to Gestalt theory, “grouping” is the law
of visual perception (see Kanizsa, 1997). Its main
idea is that whenever points (or previously formed vi-
sual objects) have a characteristic in common, they
get grouped and form a new, larger visual object,
a “Gestalt”. Some of the main grouping characteris-
tics are colour constancy, “good continuation”, align-
ment, parallelism, common orientation, convexity and
closedness (for a curve),. . . In addition, the group-
ing principle is recursive. For example, if points have
been grouped into lines, then these lines may again be
grouped according (e.g.) to parallelism.

Our purpose isnot to propose a new segmentation
method. We rather propose a computational method to
decide whether a given Gestalt (obtained by any seg-
mentation or grouping method) is sure or not. Although
most of what we write here can be generalized to other
geometric structures, we shall focus on alignments, one
of the most basic Gestalt (see Wertheimer, 1923).

In this paper, we push the study to the end for the
detection of alignments, but we will first give a general
definition of what we will call “a meaningful event”.
Many of our statements will apply to other Gestalt as
well. Our main idea is that a meaningful event is an
event that, according to probabilistic estimates, should
not happen in an image and therefore is significant. In
that sense, we shall say that it is a “proven event”. The
above informal definition immediately raises an objec-
tion: if we do probabilistic estimates in an image, this
means that we have an a priori model. We are there-
fore losing any generality in the approach, unless the
probabilistic model could be proven to be “the right
one” for any image. In fact, we shall do statistical es-
timates, but related not to a model of the images but
to a general model of perception. We shall apply the
so called Helmholtz principle. This principle attempts
to describe when perception decides to group objects
according to some quality (colour, alignment, etc.). It
can be stated in the following way. Assume that ob-
jectsO1,O2, . . . ,On are present in an image. Assume
thatk of them, sayO1, . . . ,Ok have a common feature,
say, same colour, same orientation, etc. We are then
facing the dilemna: is this common feature happen-
ing by chance or is it significant? In order to answer
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this question, we make the following mental experi-
ment: we assume that the considered quality has been
randomly and uniformly distributed on all objects, i.e.
O1, . . .On. Notice that this quality may be spatial (like
position, orientation); then we (mentally) assume that
the observed position of objects in the image is a ran-
dom realization of this uniform process. Then, we may
ask the question: is the observed repartition probable
or not?

The Helmholtz principle states that if the expectation
in the image of the observed configurationO1, . . . ,Ok

is very small, then the grouping of these object makes
sense, is a Gestalt.

Definition 1 (ε-meaningful event). We say that an
event of type “such configuration of points has such
property” isε-meaningful, if the expectation in a im-
age of the number of occurences of this event is less
thanε.

Whenε¿ 1, we talk about meaningful events. This
seems to contradict our notion of a parameter-less the-
ory. Now, it does not, since theε-dependency of
meaningfulness will be low (it will be in fact a log
ε-dependency). The probability that a meaningful event
is observed by accident will be very small. In such a
case, our perception is liable to see the event, no matter
whether it is “true” or not. Our termε-meaningful is
related to the classicalp-significance in statistics; as
we shall see further on, we must use expectations in
our estimates and not probabilities.

The program we state here has been proposed several
times in Computer Vision. We know of at least two in-
stances: Lowe (1985) and Witkin-Tenenbaum (1983).
Let us quote extensively David Lowe’s program, whose
mathematical consequences we shall try to develop
in this paper: “we need to determine the probabil-
ity that each relation in the image could have arisen
by accident, P(a). Naturally, the smaller that this
value is, the more likely the relation is to have a causal
interpretation. If we had completely accurate image
measurements, the probability of accidental occurence
could become vanishingly small. For example, the
probability of two image lines being exactly parallel by
accident of viewpoint and position is zero. However,

in real images there are many factors contributing to
limit the accuracy of measurements. Even more impor-
tant is the fact that we do not want to limit ourselves
to perfect instances of each relation in the scene—we
want to be able to use the information available from

even approximate instances of a relation. Given an im-
age relation that holds within some degree of accuracy,

we wish to calculate the probability that it could have
arisen by accident to within that level of accuracy. This
can only be done in the context of some assumption re-
garding the surrounding distribution of objects, which
serves as the null hypothesis against which we judge
significance. One of the most general and obvious
assumptions we can make is to assume that a back-
ground of independently positioned objects in three-
space, which in turn implies independently positioned
projections of the objects in the image. This null hy-
pothesis has much to recommend it.( . . . ) Given the
assumption of independence in three-space position
and orientation, it is easy to calculate the probabil-
ity that a relation would have arisen to within a given
degree of accuracy by accident. For example if two
straight lines are parallel to within5 degrees, we can
calculate that the chance is only5/180 = 1/36 that
the relation would have arisen by accident from two
independent objects.” Some main points of the pro-
gram we shall mathematically develop are contained
in the preceding quotation: particularly the idea that
significant geometric objects are the ones with small
probability and the idea that this probability is anyway
never zero because of the necessary lack of accuracy of
observations in an image. Now, the preceding program
is not accurate enough to give the right principles for
computing Gestalt. The above mentionned example is
e.g. not complete enough to be convincing. Indeed,
we simply cannot fix a priori an event such as “these
two lines are parallel” without merging it into the set
of all events of the same kind, that is, all parallelisms.
The space of straight lines in an image depends on the
accuracy of the observations, but also on the size of
the image itself. The fact that the mentionned prob-
ability be “low” (1/36) does not imply that few such
events will occur in the image: we have to look for
the number of possible pairs of parallel lines. If this
number is large, then we will in fact detect many non-
significant pairs of parallel lines. Only if the expected
number of such pairs is much below 1, can we de-
cide that the observed parallelism makes sense. Be-
fore proceeding to the mathematical theory, let us give
some other toy example and discuss our definition of
“ε-meaningfulness”.

Example and Discussion: Let us consider an image
of size 100×100 pixels. We assume that the grey-level
at each pixel is 0 or 1, which means that we work on a
binary image. Our main asumption is that if two points
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do not belong to the same object, then their grey-levels
are independent (and equally distributed if the image is
equalized). Now, imagine that we observe the following
event: a black 10× 10 square. The expectation of the
number of 10×10 black squares in the image is simply
the number of 10× 10 squares in the 100× 100 image
times the probability that each pixel of a 10×10 square
is black. And so the expectation is

90 · 90 ·
(

1

2

)100

,

which is much less than 1. We conclude that this event
is meaningful.

Remarks: 1) Subsquares (large enough) are also mean-
ingful, and so are also candidates to be “Gestalt”. 2)
Interaction of Gestalts: if we take into account that we
observe a 10× 10 black square on a 30× 30 white
background, then the expectation of the number of oc-
curences of this square-on-background event is

70 · 70 ·
(

1

2

)100

·
(

1

2

)800

,

and so we get a “much more meaningful” event. This
is rather a toy example, but it shows immediatly which
kind of difficulties and apories are associated with
“meaningfulness”:

1. Too many meaningful events: by the same argument
as above, all large enough parts of the black square
are meaningful. If (e.g.) we take all parts of this
square with cardinality larger than 50, they are all
meaningful and their number is larger than 250! We
will see how to solve the problem of having too
many meaningful events by defining the notion of
“maximal meaningful event”.

2. Problem of the a priori/a posteriori definition of the
event: if we take an arbitrary 10× 10 pattern in a
100× 100 random binary image, then the expec-
tation of the number of occurences of this event is
90· 90· ( 1

2)
100 which is much less than 1. The an-

swer is that we need an a priori geometric definition
of the event, as done in Gestaltism. The event can-
not be defined from the observed image itself!

3. Moreover, we can remark that the definition of the
geometric event changes its “meaningfulness”. For
example if we consider our 10×10 black square as
a convex set with area 100, then the expectation be-
comes( 1

2)
100 times the number of convex sets with

area 100. And so the event may loose its meaning-
fulness.

4. Abstract geometrical character of the information,
lack of localization.

ex.1: if we observe a meaningful black patch, all
what we can say is: “there is a black patch and
the indicated dots may belong to it”. We do not
know which points belong “for sure” to the event.

ex.2: if we observe a meaningful alignment of
points, then we can say “on that line, there are
aligned points” but we are not able to define the
endpoints.

5. How many Gestalt? If we make a list of “pregnant”
Gestalt, following Gestalt theory, the longer the list,
the higher the expectation of finding “false gestalt”.
Thus, perception, and also computer vision will at
some time meet the following problem: to find the
best trade off between number of Gestalt (which
might be a priori as high as possible) and the false
detection rate. For the time being, we shall not
adress this problem; it will be adressed only when
we are in a position to do a correct theory for many
Gestalt!

Our plan is as follows. In Section 2, we explain our
definition of meaningful alignments. Section 3 is de-
voted to the structure properties of the “number of false
alarms”. In Section 4, we give asymptotic (asl→∞)
and non-asymptotic estimates about the meaningful-
ness of the following observation: “k well-aligned
points in a segment of lengthl ”. Section 5 introduces
maximal meaningfulness as a mean to reduce the num-
ber of events and localize them. Section 6 gives strong
arguments in favour of our main conjecture: two maxi-
mal meaningful segments on the same line are disjoints.
In the experimental Section 7, we compute mean-
ingful and maximal meaningful alignments in several
images.

2. Definition of Meaningful Segments

2.1. Very Local Computation of the Direction
of the Level Lines

Let us consider a gray image of sizeN (that is N2

pixels). At each point, we compute a direction, which
is the direction of the level line passing by the point
calculated on aq× q pixels neighbourhood (generally
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q = 2). No previous smoothing on the image will be
performed and no restoration: such processes would
loose the a priori independence of directions which is
required for the detection method.

The computation of the gradient direction is based
on an interpolation (we haveq = 2). We define the
direction at pixel(i, j ) by rotating byπ2 the direction
of the gradient of the order 2 interpolation at the center
of the 2× 2 window made of pixels(i, j ), (i + 1, j ),
(i, j + 1) and(i + 1, j + 1). We get

dir(i, j ) = 1

‖ ED‖
ED where ED =

(
−[u(i, j + 1)+ u(i + 1, j + 1)]+ [u(i, j )+ u(i + 1, j )]

[u(i + 1, j )+ u(i + 1, j + 1)]− [u(i, j )+ u(i, j + 1)]

)
.

Then we say that two pointsX andY have the same
direction with precision1

n if

Angle(dir(X), dir(Y)) ≤ 2π

n
. (4)

In agreement with psychopysics and numerical exper-
imentation, we consider thatn should not exceed 16.

2.2. Probabilistic Model

According to the Helmholtz principle, our main as-
sumption is following: we assume that the direction at
all points in an image is a uniformly distributed random
variable. In the following, we assume thatn > 2 and
we setp = 1

n <
1
2; p is the accuracy of the direction.

We interpretp as the probability that two independent
points have the “same” direction with the given ac-
curacy p. In a structureless image, when two pixels
are such that their distance is more than 2, the direc-
tions computed at the two considered pixels should be
independent random variables. We assume that every
deviation from this randomness assumption will lead
to the detection of a structure (Gestalt) in the image.
Alignments provide a more concrete way to under-
stand Helmholtz principle. We know (by experience)
that images have contours and therefore meaningful
alignments. This is mainly due to the smoothness of
contours of solid objects and the generation of geo-
metric structure by most physical and biological laws.
Now, it can be assumed that in a first approximation,
the relative positions of objects are independent. This
means that whenever two pointsx andy belong to the
same contour, their directions are likely to be highly
correlated, while if they belong to two different objects,

their directions should be independent (see the above
quoted Lowe’s program).

From now on, the computations will be performed
on any image presenting at each pixel a direction which
is uniformly distributed, two points at a distance larger
thanq = 2 having independent directions. LetA be
a segment in the image made ofl independent pixels
(it means that the distance between two consecutive
points ofA is 2 and so, the real length ofA is 2l ). We
are interested in the number of points ofA which have

the property of having their direction aligned with the
direction ofA. Such points ofA will simply be called
aligned points of A.

The question is to know what is the minimal number
k(l ) of aligned points that we must observe on a length
l segment so that this event becomes meaningful when
it is observed in a real image.

2.3. Definition of Meaning

Let A be a straight segment with lengthl and x1,
x2, . . . , xl be thel (independent) points ofA. Let Xi be
the random variable whose value is 1 when the direc-
tion at pixelxi is aligned with the direction ofA, and
0 otherwise. We then have the following distribution
for Xi :

P[Xi = 1] = p and P[Xi = 0] = 1− p. (5)

The random variable representing the number ofxi

having the “good” direction is

Sl = X1+ X2+ · · · + Xl . (6)

Because of the independence of theXi , the law of
Sl is given by the binomial distribution

P[Sl = k] =
(

l
k

)
pk(1− p)l−k. (7)

When we consider a lengthl segment, we want to know
whether it isε-meaningful or not among all the seg-
ments of the image (and not only among the segments
having the same lengthl ). Let m(l ) be the number of
oriented segments of lengthl in a N× N image. We
define the total number of oriented segments in aN×N
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image as the number of pairs(x, y) of points in the im-
age (an oriented segment is given by its starting point
and its ending point) and so we have

lmax∑
l=1

m(l ) = N2(N2− 1) ' N4. (8)

The estimateN4 is accurate enough, taking into
account that what matters here will be its logarithm.

Definition 2(ε-meaningful segment). A lengthl seg-
ment isε-meaningful in aN × N image if it contains
at leastk(l ) points having their direction aligned with
the one of the segment, wherek(l ) is given by

k(l ) = min

{
k ∈ N,P [Sl ≥ k] ≤ ε

N4

}
. (9)

Let us develop and explain this definition. For 1≤
i ≤ N4, let ei be the following event: “thei -th seg-
ment isε-meaningful” andχei denote the characteristic
function of the eventei . We have

P
[
χei = 1

] = P
[
Sli ≥ k(l i )

]
wherel i is the length of thei -th segment. Notice that
if l i is small we may have P [Sli ≥ k(l i )] = 0. Let R
be the random variable representing the exact number
of ei occuring simultaneously in a trial. SinceR =
χe1 + χe2 + · · · + χeN4 , the expectation ofR is

E(R) = E
(
χe1

)+ E
(
χe2

)+ · · · + E
(
χeN4

)
=

lmax∑
l=0

m(l )P [Sl ≥ k(l )]. (10)

We compute here the expectation ofR but not its law
because it depends a lot upon the relations of depen-
dence between theei . The main point is that segments
may intersect and overlap, so that theei events are not
independent, and may even be strongly dependent.

By definition we have

P [Sl ≥ k(l )]≤ ε

N4
, so that E(R) ≤ ε

N4
· N4≤ ε.

This means that the expectation of the number of
ε-meaningful segments in an image is less thanε.

This notion of ε-meaningful segments has to be
related to the classical “α-significance” in statistics,

whereα is simplyε/N4. The difference which leads
us to have a slightly different terminology is following:
we are not in a position to assume that the segment
detected asε-meaningful are independent in any-
way. Indeed, if (e.g.) a segment is meaningful it may
be contained in many larger segments, which also are
ε-meaningful. Thus, it will be convenient to compare
the number of detected segments to the expectation of
this number. This is not exactly the same situation as in
failure detection, where the failures are somehow dis-
joint events. See Remark (*) below. This means thatε

is an absolute parameter, not depending upon the size
of the image, but only on the number of false detections
which the user allows. Of course, if the image is larger,
it may be expected that an increasing number of false
detections should be allowed. However, by fixingε al-
ways smaller than one, we decided not to take this op-
portunity. Our proposed definition of meaningfulness
is also related to the statistical analysis of functional
medical images (fMRI, PET) by Statistical Parameter
Map (SPM), with two main differences, however. The
first one is this: in the recent work of Stuart Clare
(FMRIB center, Oxford, see Clare (1997)), and in the
works of Friston et al. (1991) and Forman et al. (1995),
an hypothesis testing method against white noise is
performed in time series. As in the present work, the
binomial law appears and a careful account of the ef-
fect of filtering on the number of effective degrees of
freedom: this leads e.g. S. Clare to divide this number
by three after a small gaussian filtering and is related
to our decision of considering only nets of points at
a distance larger than 2. S. Clare does as we do; he
p-tests against the white noise assumption and admits
a p-value of 0.005 by patient. Here is the main dif-
ference: the number of patients, and the length of the
data are not taken into account in the test. In particular,
the time length of the test is of course just enough to
perform a significant test and thep-value is a threshold
“per patient”. In our case, we have two factors: the
first one is that the number of “patients” is huge. Thus,
with a p-test, the expectation of false detections would
be much above 1, which is what we avoid by imposing
ε much smaller than 1 and by entering into the com-
putation the number of segmentsN4. This is why we
compute an expectation and not a probability: we have
too many and not independent trials. The reason for
introducing expectation here is the non independence
(contrarily to patients) and the huge number of trials,
increasing with the image size.
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Remark. We could have defined aε-meaningful
length l segment as a segmentε-meaningful only
among the set of the lengthl segments. It would have
been a segment with at leastk′(l ) points having the
“good” direction wherek′(l ) is defined bym(l ) · [Sl ≥
k′(l )] ≤ ε. Notice thatm(l ) ' N3 because there are
approximatelyN2 possible discrete straight lines in a
N×N image and on each discrete line, aboutN choices
for the starting point of the segment. But we did not
keep this definition because when looking for align-
ments we cannot a priori know the length of the seg-
ment we look for. In the same way, we never consider
events like: “a segment has exactlyk aligned points”,
but rather “a segment has at leastk aligned points”, and
k must be given, as we do, by a detectability criterion
and not a priori fixed.

3. Number of False Alarms

3.1. Definition

Definition 3 (Number of false alarms). LetA be a
segment of lengthl0 with at leastk0 points having their
direction aligned with the direction ofA. We define
the number of false alarms ofA as

NF(k0, l0) = N4 · P[Sl0 ≥ k0
]

= N4 ·
l0∑

k=k0

(
l0
k

)
pk(1− p)l0−k. (11)

Interpretation of this definition: the numberNF(k0, l0)
of false alarms of the segmentA represents an upper-
bound of the expectation in an image of the number of
segments of probability less than the one of the consid-
ered segment.

Remark(*) (relative notion). Let A be a segment
andNF(k0, l0) its number of false alarms. ThenA is
ε-meaningful if and only ifNF(k0, l0) ≤ ε, but it is
worth noticing that we could have comparedNF(k0, l0)
not toε but to the real number of segments with prob-
ability less than the one ofA, observed in the image.
For example, if we observe 100 segments of proba-
bility less thanα, and if the expected valueR of the
number of segments of probability less thanα was
10, we are able to say that this 100-segments event
could happen with probability less than 1/10, since
10= E(R) ≥ 100 · P[R= 100]. Now, each of these
100 segments only is 10-meaningful!

3.2. Properties of the Number of False Alarms

Proposition 1. The number of false alarms NF(k0,

l0) has the following properties:

1. NF(0, l0)= N4, which proves that the event for a
segment to have more than zero aligned points is
never meaningful!

2. NF(l0, l0)= N4 · pl0, which shows that a segment
such that all of its points have the“good” direction is
ε-meaningful if its length is larger than(−4 ln N+
ln ε)/ ln p.

3. NF(k0+1, l0) < NF(k0, l0). This can be interpreted
by saying that if two segments have the same length
l0, the “more meaningful” is the one which has the
more“aligned” points.

4. NF(k0, l0) < NF(k0, l0 + 1). This property can
be illustrated by the following figure of a segment
(where a• represents a misaligned point, and a→
represents an aligned point):

→→ •→→ •• →→→→→ •

If we remove the last point(on the right), which is
misaligned, the new segment is less probable and
therefore more meaningful than the considered one.

5. NF(k0 + 1, l0 + 1) < NF(k0, l0). Again, we can
illustrate this property:

→→ •→→ •• →→→→→→

If we remove the last point(on the right), which
is aligned, the new segment is more probable and
therefore less meaningful than the considered one.

This proposition is a consequence of the defini-
tion and properties of the binomial distribution (see
Feller, 1968).

If we consider a lengthl segment (made ofl inde-
pendent pixels), then the expectation of the number of
points of the segment having the same direction as the
one of the segment is simply the expectation of the
random variableSl , that is

E(Sl ) =
l∑

i=1

E(Xi ) =
l∑

i=1

P [Xi = 1] = p · l . (12)

We are interested inε-meaningful segments, which are
the segments such that their number of false alarms is
less thanε. These segments have a small probability
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(less thanε/N4), and since they represent alignments
(deviation from randomness), they should contain more
aligned points than the expected number computed
above. That is the main point of the following propo-
sition.

Proposition 2. Let A be a segment of length l0 ≥ 1,
containing at least k0 points having the same direction
as the one of A. If NF(k0, l0) ≤ p · N4, (which is the
case when A is meaningful), then

k0 ≥ pl0+ (1− p). (13)

This is a “sanity check” for the model.

4. Thresholds

In the following, ε and p are fixed numbers smaller
than 1, and we use the notation

P(k, l ) = P [Sl ≥ k] =
l∑

i=k

(
l
i

)
pi (1− p)l−i . (14)

We recall that a segment of lengthl is ε-meaningful as
soon as it contains at leastk(l ) points having the “right”
direction, wherek(l ) is defined by

k(l ) = min

{
k ∈ N, P [Sl ≥ k] ≤ ε

N4

}
. (15)

The first simple necessary condition we can get is a
threshold on the lengthl . For anε-meaningful segment,
we have

pl ≤ P [Sl ≥ k(l )] ≤ ε

N4
, (16)

so that

l ≥ −4 ln N + ln ε

ln p
. (17)

Let us give a numerical example: if the size of the im-
age isN= 512, and if p= 1/16 (which corresponds
to 16 possible directions), the minimal length of a
1-meaningful segment islmin = 9.

We can also give estimates of the thresholdsk(l ).
The mathematical theorems are given in the Appendix.
They roughly say that

k(l ) ' pl +
√

C · l · ln N4

ε
, (18)

Figure 1. Estimates for the threshold of meaningfulnessk(l ). The
middle (stepcase) curve represents the exact value of the minimal
number of aligned pointsk(l ) to be observed on a 1-meaningful seg-
ment of lengthl in an image of size 512, for a direction precision of
1/16. The upper and lower curves represent estimates of this thresh-
old obtained by Proposition 5 and Proposition 7 (see Appendix).

where 2p(1− p) ≤ C ≤ 1/2. Some of these results
are illustrated by Fig. 1. These estimates are not nec-
essary for the algorithm (because P [Sl ≥ k] is easy
to compute) but they provide an interesting order of
magnitude fork(l ).

5. Maximal Meaningful Segments

5.1. Definition

Suppose that on a straight line we have found a mean-
ingful segmentS with a very small number of false
alarms (i.e.NF(S)¿ 1). Then if we add some “spuri-
ous” points at the end of the segment we obtain another
segment with probability higher than the one ofSand
having still a number of false alarms less than 1, which
means that this new segment is still meaningful (see
figure).

→→→→→→→→→→→→→→→→→→ • • ••

In the same way, it is likely to happen in general that
many subsegments ofS having a probability higher
than the one ofS will still be meaningful (see experi-
mental Section, where this problem obviously occurs
for the DNA image). These remarks justify the intro-
duction of the following notion of “maximal segment”.
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Definition 4 (Maximal segment). A segmentA is
maximal if

1. it does not contain a strictly more meaningful seg-
ment:∀B ⊂ A,NF(B) ≥ NF(A),

2. it is not contained in a more meaningful segment:
∀B ⊃ A,NF(B) > NF(A),

Then we say that a segment ismaximal meaning-
ful if it is both maximal and meaningful. This notion
of “maximal meaningful segment” is linked to what
Gestaltists called the “masking phenomenon”. Accord-
ing to this phenomenon, most parts of an object are
“masked” by the object itself except the parts which are
significant from the point of view of the construction
of the whole object. For example, if one considers a
square, the only significant segments of this square are
the four sides, and not large parts of the sides. With our
definition, long enough parts of a side may be mean-
ingful segments, but only the whole side itself will be
a maximal meaningful segment.

Proposition 3(Properties of maximal segments). Let
A be a maximal segment, then

1. the two endpoints of A have their direction aligned
with the direction of A,

2. the two points next to A(one on each side) do not
have their direction aligned with the direction of A.

These elementary properties are simple consequen-
ces of Proposition 1.

5.2. Density of Maximal Segments

In general, it is not easy to compareP(k, l )andP(k′, l ′)
by performing simple computations onk, k′, l andl ′.
However, a simple case is solved by the following

Proposition 4. Let A= (k, l ) and B= (k′, l ′) be two
1-meaningful segments of a N× N image(with N ≥ 3)
such that

k′

l ′
≥ k

l
and l ′ > l .

Then, B is more meaningful than A, that is NF(B) <
NF(A).

An interesting application of this proposition is the
concatenation of meaningful segments. LetA = (k, l )
andB= (k′, l ′) be two meaningful segments lying on

the same line. Moreover we assume thatA and B are
consecutive, so thatA∪ B is simply the segment(k+
k′, l + l ′). Then, since

k+ k′

l + l ′
≥ min

(
k

l
,

k′

l ′

)
,

we deduce, thanks to the above proposition, that

NF(A∪ B) < max(NF(A),NF(B)). (19)

This shows that the concatenation of two meaningful
segment is a meaningful segment.

6. A Conjecture about Maximality

Up to now, we have established some properties that
permit to characterize or compare meaningful seg-
ments. We now study the structure of maximal
segments, and give some evidence that two distinct
maximal segments on a same straight line have no
common point.

Conjecture 1. If for i = 1, 2, 3, ki andl i are integers
such thatl i 6= 0 andki ≤ l i , then

min(p, P(k1, l1), P(k1+ k2+ k3, l1+ l2+ l3))

< max
i∈{2,3}

P(k1+ ki , l1+ l i ) (20)

This conjecture can be deduced from a stronger (but
simpler) conjecture: the concavity in a particular
domain of the level lines of a natural continuous ex-
tension ofP involving the incomplete Beta function.

Corollary 1 (Union and Intersection). Suppose that
Conjecture1 is true. Then, if A and B are two segments
on the same straight line such that A6⊆ B and B 6⊆ A,
one has

min(pN4,NF(A∩ B),NF(A∪ B))

< max(NF(A),NF(B)). (21)

This is a direct consequence of Conjecture 1.
Numerically, we checked this property for all segments
A andB such that|A∪ B| ≤ 256. Forp = 1/16, we
obtained

min
|A∪B|≤256

× max((NF(A),NF(B))−min(pN4,NF(A∩ B),NF(A∪ B))

max((NF(A),NF(B))+min(pN4,NF(A∩ B),NF(A∪ B))
' 0.000754697. . . > 0,



16 Desolneux, Moisan and Morel

this minimum (independent ofN) being obtained for
A = (23, 243), B = (23, 243) andA∩ B = (22, 230)
(as before, the couple(k, l ) we attach to each segment
represents the number of aligned points (k) and the
segment length (l )).

Notice also that Conjecture 1 can be proven when
P(k, l ) is replaced by its approximation by the
Gaussian law (asymptotic estimate whenk ' pl)

G(k, l ) = 1√
2π

∫ +∞
α(k,l )

e−
x2

2 dx where

(22)
α(k, l ) = k− pl√

lp(1− p)

or by its Large Deviation estimate (asymptotic estimate
whenl →+∞ and k

l > r > p),

H(k, l ) = exp

(
k ln p+ (l − k) ln(1− p)

− k ln
k

l
− (l − k) ln

l − k

l

)
. (23)

Theorem 1 (maximal segments are disjoint). Sup-
pose that Conjecture1 is true. Then, any two maxi-
mal segments lying on the same straight line have no
intersection.

Remark. The numerical checking of Corollary 1
ensures that forp = 1/16 (but we could have checked
for another value ofp), two maximal meaningful seg-
ments with total length smaller than 256 are disjoint,
which is enough for most practical applications.

7. Experiments

In all the following experiments, the direction at a pixel
in an image is computed on a 2×2 neighborhood with
the method described in section 2.1 (q= 2) and the
precision isp = 1/16.

The direction is computed at all pixels, unless the
gradient is strictly equal to zero (up to machine preci-
sion). LetN denote the size of the considered image.
The algorithm used to find the meaningful segments
is the following. For each one of the four sides of
the image, we consider for each pixel of the side the
lines starting at this pixel, and having an orientation
multiple of π/48. And then on each line, we com-
pute the meaningful segments. For each segment, let
l be its length counted in independant pixels (which
means that the real length of the segment is 2l ), then

among thel points we count the numberk of points
having their direction aligned with the direction of the
segment (with the precisionp), and finally we com-
pute P(k, l ): if it is less than 1

48N3 × 1
10, we say that

the segment is meaningful. The value 48N3 is an es-
timate of the number of considered segments and we
took ε = 1/10. Because of the angle precision 2π/16
(to be compared withπ/48), the sampling of direc-
tions is enough to cover all possible alignments in a
512×512 image. Motice thatP(k, l ) can be simply tab-
ulated at the begining of the algorithm using Newton’s
law P(k+ 1, l + 1) = pP(k, l )+ (1− p)P(k+ 1, l ).

It must be made clear that we appliedexactly the
same algorithm to all presented images, which have
very different origins. The only parameter of the al-
gorithm is precision. We fixed it equal to 1/16 in all
experiments; this value corresponds to the very rough
accuracy of 22.5 degrees; this means that (e.g.) two
points can be considered as aligned with, say the 0
direction if their angles with this direction are up to
±11.25 degrees! It is clear that these bounds are very
rough, but in agreement with the more pessimistic esti-
mates for the vision accuracy in psychophysics and the
numerical experience as well. Moreover, in all experi-
ments, we only keep the meaningful segments having
in addition the property that their endpoints have their
direction aligned with the one of the segment: black
points represent points on a meaningful segment which
have the same direction as the one of the segment (with
the precision p), and gray points represent points on a
meaningful segment which do not have the same direc-
tion as the segment.

For each one of the following images, we comput

1. all the meaningful segments.
2. the maximal meaningful segments.
3. for some of them: meaningful segments with length

less than 30 or 20. These segments have a
small length (close to the minimal lengthlmin =
−4 ln N/ ln p), and consequently a density of
aligned points close to 1.

Typical CPU time for a 512× 512 image is ten sec-
onds, and one second for a 256× 256 image. As a
general comment to all experiments, we shall see that
the (non maximal) meaningful events are too long: in-
deed, if we find a very meaningful segment (and this
happens very systematically in the experiments), then
much larger segments containing this very meaning-
ful one will still be meaningful. We display, for a sake
of completeness, several images with all meaningful
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alignments. In continuation, we display the maximal
meaningful alignments, as a way to check by compar-
ison that these maintain the whole alignment informa-
tion, and are by far more accurate. We think the experi-
ments clearly demonstrate the necessity of maximality.
We also diplay in several images the only alignments
whose length is smaller than a given threshold (20 or
30). This is a way to check that, in “natural” images,
most alignments can be locally detected. Indeed, we
see that most maximal detected alignements are a con-
catenation of small, still meaningful, alignments.

Image 1: Pencil strokes (Fig. 2). This digital image
was first drawn with a ruler and a pencil on a stan-
dard A4 white sheet of paper, and then scanned into
a 478× 598 digital image (image 1a); the scanner’s

Figure 2. Pencil strokes.

apparent blurring kernel is about two pixels wide and
some aliasing is perceptible, making the lines some-
what blurry and dashed. Two pairs of pencil strokes are
aligned on purpose. We display in the first experiment
all meaningful segments (image 1b). Four phenomena
occur, which are very apparent in this simple example,
but will be perceptible in all further experiments.

1. Too long meaningful alignments: we commented
this above; clearly, the pencil strokes boundaries are
very meaningful, thus generating larger meaningful
segments which contain them.

2. Multiplicity of detected segments. On both sides of
the strokes, we find several parallel lines (reminder:
the orientation of lines is modulo 2π ). These parallel
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Figure 3. White noise blurred images.

lines are due to the blurring effect of the scanner’s
optical convolution. Classical edge detection theory
would typically select the best, in terms of contrast,
of these parallel lines.

3. Lack of accuracy of the detected directions: We
do not check that the directions along a meaning-
ful segment be distributed on both sides of the lines
direction. Thus, it is to be expected that we de-
tect lines which are actually slanted with respect
to the edge’s “true” direction. Typically, a blurry
edge will generate several parallel and more or less
slanted alignements. It is not the aim of the actual
algorithm to filter out this redundant information;
indeed, we do not know at this point whether the
detected parallel or slanted alignments are due to an

edge or not: this must be the object of a more com-
plex algorithm. Everything indicates that an edge
is no way an elementary phenomenon in Gestalt.

We display in the second experiment for this image
all maximal meaningful segments (image 1c), which
show for each stroke two bundles of parallel lines on
each side of the stroke. In the third one, we display all
meaningful segments whose length is less than 60 pix-
els (image 1d). This achieves a kind of localization of
the segments. Now, a visual comparison between this
experiment and the former one (1c) shows that max-
imality achieves a better, more accurate localization.
Thus, we will not show the “small segments” in all
experiments to follow.
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Image 2: White noise blurred images (Fig. 3). Image
2a is a white noise, all pixels values being independent
and identically distributed with a gaussian law. Im-
age 2b is Image 2a convolved with a gaussian kernel
with standard deviation 4 pixels and Image 2c is Im-
age 2a convolved with a gaussian kernel with standard
deviation 16 pixels. We apply the same algorithm as
before to all of these images. The outcome was for all
of three: no alignement detected! This experiment was
devised to show that the local independence of pixels
can be widely violated without affecting the final out-
come. Indeed, a blurring creates local alignments but
not global ones.

Image 3: Uccello’s painting (Fig. 4). This im-
age (3a) is a result of the scan of an Uccello’s paint-
ing: “Presentazione della Vergine al tempio” (from the
book “L’opera completa di Paolo Uccello”, Classici
dell’arte, Rizzoli). In image 3b we display all maxi-
mal meaningful segments and in image 3c all mean-
ingful segments with length less than 60. Notice how
maximal segments are detected on the staircase in

Figure 4. Uccello’s painting.

spite of the occlusion by the going up child. Compare
with the small meaningful segments. All remarks made
in Image 1 apply here (parallelisms due to the blur,
etc.)

Image 4: Airport image (Fig. 5). This digital image
also has a noticeable aliasing which creates horizontal
and vertical dashes along the edges. We display in
image 4b all maximal detectable segments, always for
ε = 1/10. We compare in image 4c and 4d with the
same image withε = 1/100 andε = 1/1000.

Image 5: A road (courtesy of INRETS) (Fig. 6).
We display all maximal meaningful segments (image
5b) and all meaningful segments with length less than
60 (image 1c). Notice the detected horizontal lines in
5b: they correspond to “horizon lines”, that is, lines
parallel to the horizon. They tend to accumulate to-
wards the horizon of the image. Such lines correspond
to nonlocal alignments (they are not present in Image
5c). They are due to a perspective effect: all visual ob-
jects on the road (shadows, spots, etc.) are seen in very
slanted view. Thus, their contours are mostly parallel
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Figure 5. Airport image.

to the horizon, thus generating what we should call
“perspective alignements”.

8. Conclusion

This preliminary study about Gestalt has tried to build
the correct mathematical framework for the widespread
idea that significant geometric structures in an image
correspond to very low probability events. They are
two ways to interpret this statement: the wellspread
one is to define a probabilistic functional which is min-
imized, thus yielding the most likely geometric struc-
tures. Now, we emphasized the fact that the detection
of structure has an intermediate stage, clearly missed
in the variational framework: before we look for the
most likely structures, we have to make a list of all
proven structures. Experiments show well the differ-
ence between both approaches: where edge detection
algorithm (which always look for the best position for
an edge) directly yield a single edge, we find multiple
alignments. In many cases, it is plain from the exper-
iments that edge detection could be interpreted as a
selection procedure among the alignments. To summa-
rize, we have two different qualities which are mixed
in the variational framework: the feasibility and the

optimality. By looking for optimality only, we for-
get to prove that the found, optimal structures indeed
exist. Next, we proposed an alternative to global vari-
ational principles: the notion of maximal event. In
some extent, maximal alignments are local minimizers
of a probability functional. The main difference is first
that we do a minimization among feasible structures
only; second, that we get aditional structure proper-
ties from maximality, as the fact that maximal align-
ments do not intersect. It may well be asked at that
point what we can further do. We have considered
one Gestalt quality only: the alignment. A first ques-
tion is: to which other qualities the notions developped
here apply? We do not intend to give here a detailed
answer. We will develop this general viewpoint in a
further work. A second question which was raised by
Lowe is the combination of several Gestalt qualities
to generate more elaborate geometric structures. Edge
detection is such an elaborate geometric structure: it is
a combination of alignment (or curviness), of contrast
along the edge curve, of homogeneity on both sides, of
maximality of the slope and finally of stability accross
scales! (see the scale space theory). All of these cri-
teria contribute to more and more sophisticated edge
detectors. In this paper, we have shown that one of the
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Figure 6. A road.

qualities involved, the alignment, can be proved sep-
arately. The other qualities can receive an analogous,
if not sometimes identical theory of meaningfulness.
Now, the question of how we should let such qualities
collaborate seems open.

A. Appendix

In the following, ε and p are fixed numbers smaller
than 1. We recall the notation

P(k, l ) = P[Sl ≥ k] =
l∑

i=k

(
l
i

)
pi (1− p)l−i .

We also recall that a segment of lengthl isε-meaningful
as soon as it contains at leastk(l ) points having the
“right” direction, wherek(l ) is defined by

k(l ) = min

{
k ∈ N, P(k, l ) ≤ ε

N4

}
. (24)

A.1. Sufficient Condition of Meaningfulness

In this appendix, we will see how the theory of large de-
viations and other inequalities concerning the tail of the
binomial distribution can provide us a sufficient condi-
tion of meaningfulness. The key point is the following
result due to Hoeffding (see Hoeffding, 1963).

Theorem 2(Hoeffding’s inequality). If k, l are posi-
tive integers with k≤ l , and if p is a real number such
that0< p < 1.

Then if r= k/ l ≥ p, we have the inequalities

P(k, l ) ≤ exp

(
lr ln

p

r
+ l (1− r ) ln

1− p

1− r

)
≤ exp(−l (r − p)2h(p))

≤ exp(−2l (r − p)2), (25)
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where h is the function defined on]0, 1[ by

h(p) = 1

1− 2p
ln

1− p

p
for 0< p <

1

2
,

h(p) = 1

2p(1− p)
for

1

2
≤ p < 1.

Using this theorem, we deduce a sufficient condition
for a segment to be meaningful. The sizeN of the
image, and the probabilityp < 1/2 of a given direction
are fixed.

Proposition 5 (sufficient condition ofε-meaning-
fulness). Let A be a length l segment, containing at
least k aligned points. If

k ≥ pl +
√

4 ln N − ln ε

h(p)

√
l , (26)

then A isε-meaningful.

Notice that Proposition 5 is interesting only when

l ≥ pl +
√

l

h(p)
(4 ln N − ln ε),

that is when

l ≥ 4 ln N − ln ε

(1− p)2h(p)
.

Numerical example: forε= 1, N= 512 andp= 1/16,
we obtainl ≥ 10.

A.2. Necessary Conditions for Meaningfulness

We use a comparison between the Binomial and the
Gaussian laws given by the following

Theorem 3 (Slud, 1977). If 0 < p ≤ 1/4 and pl≤
k ≤ l , then

P [Sl ≥ k] ≥ 1√
2π

∫ +∞
α(k,l )

e−x2/2 dx where

α(k, l ) = k− pl√
lp(1− p)

, (27)

Proposition 6 (necessary condition of meaningful-
ness). We assume that0< p ≤ 1/4 and N are fixed.

If a segment S= (k, l ) is ε-meaningful then

k ≥ pl + α(N)
√

lp(1− p), (28)

whereα(N) is uniquely defined by

1√
2π

∫ +∞
α(N)

e−x2/2 dx= ε

N4
. (29)

This proposition is a direct consequence of Slud’s
Theorem. The assumption 0< p≤ 1/4 is not a strong
condition since it is equivalent to consider that the num-
ber of possible oriented directions is larger than 4.

A.3. Asymptotics for the Meaningfulness
Threshold k(l )

In this section, we still consider thatε andp are fixed.
We will work on asymptotic estimations ofP(k, l )
whenl is “large”. We first recall a version of the Cen-
tral limit theorem in the particular case of the binomial
distribution (see Feller, 1968).

Theorem 4 (De Moivre-Laplace limit theorem). If α
is a fixed positive number, then as l tends to+∞,

P [Sl ≥ pl + α
√

l · p(1− p)]

−→ 1√
2π

∫ +∞
α

e−x2/2 dx. (30)

Our aim is to get the asymptotic behaviour whenl is
large of the thresholdk(l )defined by (15). The problem
is that if l gets to infinity, we also have to consider that
N tends to infinity (because, sincel is the length of
a segment in aN× N image, necessarilyl ≤√2N).
And so theα used in the De Moivre-Laplace theorem
will depend onN. This is the reason why we use the
following stronger version of the previous theorem (see
Feller, 1968).

Theorem 5 (Feller). If α(l ) → +∞ and α(l )6/
l → 0 as l→+∞, then

P
[
Sl ≥ pl + α(l )

√
l · p(1− p)

]
∼ 1√

2π

∫ +∞
α(l )

e−x2/2 dx. (31)

Proposition 7 (asymptotic behaviour of k(l )). When
N→+∞ and l→+∞ in such a way that
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l/(ln N)3→+∞, one has

k(l ) = pl+
√

2p(1− p) · l ·
(

ln
N4

ε
+ O(ln ln N)

)
.

(32)

This proposition shows that the lower estimate given
in Proposition 6 in fact gives the right asymptotic esti-
mate. The conditionl/(ln N)3 does not make much
sense for the considered values ofN (about 1000).
Nonetheless, Proposition 7 conforts the previous ones.
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