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Abstract The a contrario framework for the
detection of convergences in an image consists
in counting, for each tested point, the num-
ber of elementary linear structures that con-
verge to it (up to a given precision), and when
this number is high enough, the point is de-
clared to be a meaningful point of convergence.
This is so far analogous to a Hough transform,
and the main contribution of the a contrario
framework is to provide a statistical definition
of what “high enough” means: it means large
enough to ensure that in an image where all
elementary structures are distributed accord-
ing to a background noise model, there is, in
expectation, less than 1 detection. Our aim in
this paper is to discuss, from a methodological
viewpoint, the choice and the influence of the
background noise model. This model is gen-
erally taken as the uniform independent dis-
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tribution on elementary linear structures, and
here we discuss the case of images that have a
natural anisotropic distribution of structures.
Our motivating example is the one of mammo-
grams in which we would like to detect stellate
patterns (that appear as local convergences of
spicules), and in which the linear structures
are naturally oriented towards the nipple. In
this paper, we show how to tackle the two
problems of: (a) defining and estimating an
anisotropic “normal” distribution from an im-
age, and of (b) computing the probability that
a random structure, following an anisotropic
distribution, converges to any given convex re-
gion. We illustrate the whole approach with
several examples.

Keywords a contrario methodology · points
of convergence in images · stellate lesions
in mammograms · stochastic geometry ·
estimation of a parametric model

1 Introduction

There are many types of convergences of lin-
ear structures in images. One can mainly dis-
tinguish two classes: the global convergences
(that are generally related to vanishing points)
and the local convergences. This second class
of convergences contains many different situ-
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ations. For instance they may correspond to
corners or junctions in the image, and in the
framework of medical images they correspond
to some type of geometric patterns that can,
for example, characterize lesions. This is in
particular the case of stellate lesions in mam-
mograms. This last type of convergences will
be of special interest for us, and it is the situ-
ation that led us to develop the method pro-
posed in this paper.

Among all possible methods to detect con-
vergences in an image, we will be interested
here in the so-called a contrario methods. The
general idea underlying this methodology is
the following principle: some geometric struc-
tures that occur in an image are meaningful
when they have a low probability of happening
by chance. Under this form, this general prin-
ciple is sometimes called Helmholtz principle
(as in the paper of S.C. Zhu [20]) or also the
non-accidentalness principle (as in the paper
of Witkin and Tenenbaum [18] or in the book
of D. Lowe [12]). In [5], a general methodol-
ogy has been proposed to translate this prin-
ciple into an efficient tool, that is called the a
contrario methodology. It works like this: first
define a noise model (also called naive model,
background model or a contrario model), and
then, given a geometric pattern observed in an
image, compute the expected number of such
patterns occurring in the noise model. When
this expected number is less than ε (a positive
small real number, less or equal to 1 in gen-
eral), then the observed geometric pattern is
declared ε-meaningful. One of the aim of the
paper will be to discuss the choice of the noise
model. Indeed, in many situations, the noise
model is taken to be the independent uniform
distribution on elementary objects (where ge-
ometric patterns correspond to a certain ar-
rangement of these elementary objects). Now,
this noise model is assumed to correspond to
a “normal” situation in which no meaningful
patterns are to be found. It has therefore to
be chosen carefully.

There is a huge litterature on the issue of
detecting global convergences such as vanish-

ing points in man-made environments images.
In the a contrario framework, this issue has al-
ready been addressed by Almansa et al. in [1].
The authors consider the line segments of an
image and define vanishing points as regions of
the plane that are intersected by a large num-
ber of the supporting lines of the segments.
Their a contrario noise model is that the sup-
port lines are independent and uniformly dis-
tributed. Using results of stochastic geometry,
they build a partition of the plane such that
the probability that a random line meets a re-
gion is constant for every region. Finally, thanks
to the definition of a number of false alarms for
each region, they are able to detect meaningful
vanishing points.

As we already mentioned it, the local con-
vergences in an image can be of very differ-
ent types: corners, junctions, stellate patterns,
etc. Many of these situations have already been
tackled in the a contrario framework. For in-
stance, Cao in [3] detects corners in a image,
and in [19], Xia, Delon and Gousseau set a ro-
bust a contrario framework for the detection
of junctions in images. These authors consider
the pixels as elementary objects and compute
their orientation in order to count the number
of pixels with similar orientation in the neig-
borhood of each point. The a contrario noise
model is that the norm of the locally normal-
ized gradient follows a Rayleigh distribution,
that its phase is uniformly distributed and that
both variables are independent. They define a
notion of strength of each potential branch of
a junction, and of strength of the junction as
the minimal strength of its branches. Finally,
meaningful junctions are the ones that have
a strength larger than a threshold, computed
thanks to the a contrario methodology. This
threshold ensures that there are less than ε-
meaningful events in a random image following
the noise model.

In medical images and more precisely in
mammograms, stellate lesions and architectural
distortions are also characterized by a local
convergence pattern. There are a lot of works
on the detection of such lesions. These works
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often rely on the extraction of distinguishing
features (see for instance [21], [2]) and then
perform the aggregation of these features in
a decision process (for instance a decision bi-
nary tree or a Bayesian classifier). One of the
features of stellate lesions and of architectural
distortions is the local organization of elemen-
tary oriented structures. In [11], Kegelmeyer
introduced the ALOE feature that measures
the flatness of the local orientation histogram:
small values of the ALOE feature indicate that
the histogram of the local orientation is flat,
which happens in the case of stellate lesions,
whereas high values of the ALOE are the con-
sequence of a mode in the local orientation his-
togram which can describe parallel fibers in
this region. Other statistics have been defined
to characterize stellate patterns. For instance
in [10], Karssemeijer et. al compute the orien-
tation of each pixel using Gaussian filters and
then count, at each location, the number of
pixels in a ring-shaped neighborhood that are
oriented towards the center. To differentiate
stellate patterns and parallel fibers they define
a second feature, caracterizing the fact that
well-oriented pixels are all around the center.
Then, having these two features, they build
a classifier using a dataset of example feature
vectors taken from digitized mammograms, all
showing a stellate lesion labeled by an expert
radiologist. Recently Palma et al. in [15] and
[16] (see also more details in [14]) proposed an
a contrario framework for the detection of stel-
late patterns in digital breast tomosynthesis.
The stellate patterns are modeled as concen-
tric circles (annulus) such that there is a large
number of pixels in this annulus that are ori-
ented towards its center. The a contrario noise
model is that the pixels are independent and
that their orientations are uniform. And the a
contrario methodology gives the threshold for
an annulus to be a meaningful stellate pattern.

Our main concern in this paper will be the
choice of the a contrario noise model. In many
applications, it is usually chosen as the i.i.d.
(independent identically distributed) uniform
distribution on elementary structures or ob-

jects. This choice is made for the sake of sim-
plification of theoretical computations and it
is also often a rough approximation of the dis-
tribution of elementary objects in a “normal”
image. However in the case of mammograms,
the uniform model on the orientation of the
linear structures doesn’t fit well their normal
distribution. Indeed, the linear structures nat-
urally converge towards the nipple, so that the
“normal” distribution is not isotropic. We will
therefore propose anisotropic models describ-
ing a principal normal convergence and derive
the a contrario method for the detection of
convergences in this new framework. As an-
other example of departure from the i.i.d. uni-
form choice, let us also mention the work of
Grosjean et al. in [8] and [9] on the detectabil-
ity of bright masses in mammograms in an a
contrario setting. In their work the noise model
is chosen as a power law Gaussian texture,
that is not an i.i.d. uniform distribution and
that is known, when the power law exponent
is β ' 3, to model well the texture of mammo-
grams. They are then able to explain a visual
perceptual phenomenon that relates the size
and brightness of visible spots to the power
law exponent of the texture.

Finally, let us emphasize that our contribu-
tion in this paper is mainly a methodological
one. The experimental results we show on the
detection of stellate lesions in mammograms
are not as accurate as the state-of-the-art ones.
The reason for this is that we consider here
only one feature of these lesions and detect-
ing them accurately requires the aggregation
of more than one feature.

The paper is organized as follows. The first
part of the paper deals with the detection of
global convergences in the image plane, and
the second part with local ones. More precisely,
in Section 2 we describe the a contrario frame-
work for the detection of regions of the plane
that are met by a large number of lines. We
first start with the i.i.d. uniform model on lines
and give useful results of stochastic geometry
in that framework, mainly about the proba-
bility for a random line to meet a given con-
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vex region of the plane. Then we introduce a
Gaussian distribution on lines that takes into
account a natural convergence towards a given
point M . We then show how the results of
stochastic geometry are extended to that case.
We also give some asymptotic results on the
behavior of the Gaussian distribution on lines.
In Section 3, we give an algorithm for the esti-
mation of a uniform-Gaussian mixture model
from a set of lines. And in Section 4 we show
several examples of detection of global conver-
gences illustrating the influence of the choice
of the a contrario noise model. In the second
part of the paper (Section 5), we will be in-
terested in local convergences and here again
we will show how to estimate an anisotropic
model from a set of line segments in an image,
and we will illustrate the methodology on sev-
eral examples. Finally we end the paper with
a conclusion and discussion in Section 6.

2 The a contrario framework for the
detection of global convergences

2.1 Definitions

Let us consider an image defined on a domain
Ω ⊂ R2. Let N be the number of lines in
the image. These lines can be, for instance,
the supporting lines of the segments detected
in the image by the Line Segment Detector
(LSD) algorithm of Grompone et al. [6], also
available online on IPOL1. Each line D is rep-
resented by its polar coordinates denoted by
(ρ, ϕ) with (ρ, ϕ) ∈ R × [0, π) (see Figure 1).
The lines are the elementary objects we study.
Due to measurement errors and unprecise con-
vergences, we won’t be able to detect “points
of convergence” and we shall rather search for
“regions of convergence”, that are regions of the
plane such that “a lot of” lines intersect them.

For a region V of the plane, the number
of lines that meet V is computed and denoted
by k(V ). We will be interested in regions such
that k(V ) is “large”. To define what “large”

1 http://www.ipol.im/pub/art/2012/gjmr-lsd/

�

0

ϕ

D(ρ, ϕ)

Fig. 1 The image domain Ω is centered at 0, that
is also the origin of the polar parametrization of
straight lines. The distance ρ is the signed distance
from 0 to the line D = D(ρ, ϕ). Notice that lines
with different ρ but with same angle ϕ are parallel.

means, we first need to compute the proba-
bility of what we observe under an a contrario
noise model.
The noise model is the following: we assume
that the N lines in the image domain Ω are
independent and identically distributed with a
measure µf of the form

dµf = f(ρ, ϕ)dρdϕ

where f is a non-negative function.
If f is chosen to be the constant 1 then the

measure dµ1 = dρdϕ is the uniform measure
on lines (also called the Poincaré’s measure)
and it is the only measure, up to a positive
multiplicative constant, on lines that is invari-
ant under translations and rotations (see the
proof of this in [17]).

We can now introduce the following defini-
tion of meaningful regions of convergence un-
der an a contrario noise model.

Definition 1 Let V ⊂ R2 be a convex set.
The probability that a random line of the im-
age domain Ω intersects the convex set V un-
der the measure µf is defined by

pf (V ) :=
µf (D ∩ V 6= ∅ and D ∩Ω 6= ∅)

µf (D ∩Ω 6= ∅)
. (1)

The number of false alarms of the region V

under the measure µf is then defined by

NFAf (V ) = NT · B(N, k(V ), pf (V )), (2)
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where NT is the number of tests (number of
tested regions), k(V ) is the number of lines,
among the N lines of the image, that intersect
the region V and

B(l, k, p) :=
l∑

j=k

(
l

j

)
pj(1− p)l−j (3)

is the tail of the binomial distribution of pa-
rameters l and p.
Finally, let 0 < ε ≤ 1. When NFAf (V ) ≤ ε,
the region V is said ε-meaningful under the
measure µf .

This definition of the number of false alarms
(NFA) has for consequence the following propo-
sition, that provides a real meaning to the pa-
rameter ε: it is an upper-bound of the number
of ε-meaningful events that can occur in an im-
age where the lines follow the a contrario noise
model.

Proposition 1 Let Mε be the random vari-
able that counts the number of ε-meaningful
regions in an image where the N lines are in-
dependent and identically distributed with the
law µf . Then the expectation of Mε satisfies

E(Mε) = E

(∑
V

1{V is ε-meaningful}

)
≤ ε. (4)

Proof When theN lines are randomly distributed,
then the integers k(V ) become random vari-
ables and we have:

E(Mε) =
∑
V

P(NFAf (V ) ≤ ε)

=
∑
V

P
(
B(N, k(V ), pf (V )) ≤ ε

NT

)

≤
∑
V

ε

NT
= ε,

where the inequality comes from the well-known
result in statistics that p-values are uniformly
distributed under the null hypothesis. ut

As shown by Formula (2) the number of
false alarms is the product of the number of

tests that is usually very high, with the bi-
nomial tail that can be very small in com-
parison, since the parameter pf (V ) is often
small. This can produce computational issues
that can fortunately be avoided by using the
large deviations approximation available when
k(V ) ≥ Npf (V ) (see [7] for instance):

log NFAf (V ) ≈ logNT − k(V ) log
k(V )/N

pf (V )

− (N − k(V )) log
1− k(V )/N

1− pf (V )
. (5)

2.2 Results of stochastic geometry under the
uniform measure on lines

In order to calculate the probability that a ran-
dom line meets a region V one needs first to
calculate the measure of the set of lines, that
meet the image domain Ω and then the mea-
sure of the set of lines that meet both convex
sets V and Ω as in Formula (1). We will first
recall in this section some well-known results
of stochastic geometry under the uniform mea-
sure on lines defined by

dµ1 = dρ dϕ.

In the next section we will see how these re-
sults change when we use a Gaussian measure
on lines instead of the uniform one. The main
result we will need is the following theorem,
the proof of which can be found in the first
chapter of [17].

Theorem 1 (see [17]) Let K1 and K2 be two
bounded closed convex sets of the plane R2.
Then the µ1-measure of the set of lines D meet-
ing K1 is given by

µ1(D ∩K1 6= ∅) = PerK1, (6)

where Per denotes the perimeter (i.e. the length
of the boundary) of a set.
And the µ1-measure of the set of lines meeting
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both K1 and K2 is given by

µ1(D ∩K1 6= ∅ and D ∩K2 6= ∅) =
Li − Le if K1 ∩K2 = ∅,
PerK2 if K2 ⊂ K1,
PerK1 + PerK2 − Le otherwise,

(7)

where Li and Le are the interior and exte-
rior perimeters of K1 and K2, respectively de-
fined as the length of the boundary of the in-
terior cover of K1 and K2 and the length of
the boundary of the convex hull of K1 ∪K2 as
shown on Figure 2.

Fig. 2 Exterior and interior perimeters of two con-
vex sets K1 and K2 in the case where K1∩K2 = ∅.
The convex set Ce is the convex hull of K1 and K2

so that the exterior perimeter is Le = PerCe. And
Ci is the interior cover of K1 and K2, so that the
interior perimeter is Li = PerCi.

From both Equations (6) and (7) one can
deduce the probability, under µ1, for a random
line D to meet the convex set K2 conditionally
to the event that it meets K1, as it is simply
given by :

Pµ1
(D ∩K2 6= ∅ |D ∩K1 6= ∅) =

µ1(D ∩K1 6= ∅ and D ∩K2 6= ∅)
PerK1

.

In the following, to have simple formulas,
we will often assume that the image domain
Ω is the disk B(0, RI) of radius RI and cen-
tered in 0. This is just a simplifying hypothesis,
and all results can also be stated using a rect-
angular domain. Formulas would just be less
simple.

An important consequence of the results
of Theorem 1 is that they allow us to con-
struct the set of test regions. We will use here
the construction proposed in [1], and that we
briefly recall now. The family of test regions
V cover the whole image plane R2 and there
are two kinds of regions: the interior regions
that are inside the image domain Ω assumed
to be Ω = B(0, RI) and the exterior regions
that are outside Ω. A value r for the precision
of the convergences is first fixed. The interior
regions are then chosen to be disks centered at
pixels x ∈ Ω and with radius r. Not all pixels
need to be taken, it is enough to take them at
distance r/2 for instance. The probability that
a random line under the uniform distribution
meets an interior region V = B(x, r) condi-
tionally to the fact that it already meets the
image domain Ω is given by Theorem 1 and it
is equal to

p1(V ) =
PerB(x, r)

PerB(0, RI)
=

r

RI
,

and it is independent of x. Then, exterior re-
gions are chosen to be portions of circular sec-
tors with angle Θ = 2r/RI between two dis-
tances di and di+1. The sequence of distances
di is defined in such a way that the probabil-
ity for a random line to meet an exterior re-
gion conditionally to the fact that it already
meets the image domain Ω is also equal to
r/RI . Therefore all regions, interior or exte-
rior, are of equal probability. The details of
the construction of regions and precise formu-
las for di can be found in [1]. In particular, the
sequence di if finite, and there is an integer i
for which the angular sector region is between
the two distances di and the infinity. This “last
distance” di will be denoted d∞ in the follow-
ing. See Figure 3, for an example of exterior
regions.
The procedure of detection is applied with sev-
eral scales r. Thus we have to adjust the num-
ber of tests NT in (2) in order to guarantee
that we have less than ε-meaningful events in
total. This implies that the number of tests is
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in fact the number of all tested regions, that is

NT =
∑
r

(#{V re }e +#{V ri }i) ,

where {V re }e (resp. {V ri }i) denotes the set of
exterior (resp. interior) regions at scale r.

Θ

B (0, RI)

Fig. 3 The image domain is assumed to be the disk
B(0, RI). The exterior regions are portions of circu-
lar sectors with angle Θ and between two distances
di and di+1. They form a partition of the outside
planar domain R2 \Ω.

2.3 A Gaussian law on lines

In this section, we want to go beyond the uni-
form measure on lines and use an a contrario
noise model that will be able to take into ac-
count a main “normal” convergence of the lines
in the image. To do this, we introduce the fol-
lowing Gaussian measure µg on lines given by

dµg =
1

π
√
2πσ

e−(ρ−xMcosϕ+yM sinϕ)2/2σ2

dρdϕ,

(8)

where (xM , yM ) are the cartesian coordinates
of a point M in the image plane R2 and σ > 0

is a parameter. This measure µg models the
fact that the lines have a tendency to converge

towards the point M (see Figure 4). The pa-
rameter σ controls the “precision” of the con-
vergence (as in the usual 1D Gaussian distribu-
tion where it controls the “width of the peak”).

The density function of the Gaussian mea-
sure µg defined by (8) is given for every (ρ, ϕ) ∈
R× [0, π) by

g(ρ, ϕ) =
1

π
√
2πσ

e−(ρ−xMcosϕ+yM sinϕ)2/2σ2

=
1

π
√
2πσ

e−(ρ−rM cos(ϕ−θM ))2/2σ2

,

where (rM , θM ) are the polar coordinates of
M . The constant 1

π
√
2πσ

is the normalization
constant making the integral of g on R× [0, π)

equal to 1.

Proposition 2 The variable ρ − rM cos(ϕ −
θM ) is the signed distance from the line D(ρ, ϕ)

to the point M . Under µg this variable follows
the 1D Gaussian law with mean 0 and variance
σ2, and the variable ϕ follows the uniform law
on the interval [0, π).

Proof With the change of variables ρ̃ = ρ −
rM cos(ϕ−θM ), the density probability of (ρ̃, ϕ)
is given by:

g̃(ρ̃, ϕ) = g(ρ̃+ rM cos(ϕ− θM ), ϕ)

=
1

π
√
2πσ

e−ρ̃
2/2σ2

.

By integration on ϕ we deduce that the marginal
density probability of ρ̃ is the 1D Gaussian law
with mean 0 and variance σ2. And the integra-
tion on ρ shows that the marginal distribution
on ϕ is the uniform law on [0, π). ut

On Figure 4 we show some sets of lines sam-
pled from the uniform distribution and from a
Gaussian distribution given by Eq. (8).

2.4 Measure of the set of lines meeting convex
sets under the Gaussian law

We show in this section how Equations (6) and
(7) change when, instead of the uniform law on
lines, we use a Gaussian law on lines defined
by Equation (8). We first recall the definition
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Fig. 4 The image domain Ω is here a square of
side length 512. First line: the left picture repre-
sents a set of 200 lines under the uniform mea-
sure conditioned to meet the image domain Ω; the
right picture represents a set of 200 lines under
the Gaussian law conditioned to intersect Ω with
σ = 20 and (xM , yM ) = (286, 306). Second line:
the same samples represented as points (ρ, ϕ) in
the rectangular domain [−256, 256] × [0, π). Left
picture: the dots are uniformly distributed. Right
picture: the dots are concentrated around the curve
(rM cos(θM−ϕ), ϕ) plotted in red. The width of the
concentrated region is of the order of the standard
deviation σ.

of the support function of a convex set since
we will need it extensively in the following.

Definition 2 (Support function of a con-
vex set) Let K be a closed bounded convex
set. The support function of K is defined for
all ϕ ∈ [0, 2π) by

sK(ϕ) = sup
x∈K
〈x, eϕ〉, (9)

where eϕ is the unit vector having an angle ϕ
with the horizontal axis, and 〈·, ·〉 is the usual
Euclidean scalar product in R2.

The perimeter of a convex set K can be
computed from its support function sK , and
more precisely we have the following result (see
[17] for a proof):

PerK =

2π∫
0

sK(ϕ)dϕ. (10)

We now present some results of stochastic
geometry under the Gaussian distribution (Eq.
(8)) on lines. Such a Gaussian distribution is
described by two parameters: a point M (its
cartesian coordinates are denoted by (xM , yM )

and the polar ones by (rM , θM )) and a width
(or standard deviation) parameter σ.

Proposition 3 Let K be a closed bounded con-
vex set and let sK denote its support function.
The measure under the law µg of the set of
lines meeting K is given by

µg(D ∩K 6= ∅) =

1

π

π∫
ϕ=0

[
Φ

(
sK(ϕ)− rM cos(θM − ϕ)

σ

)

−Φ

(
− sK(ϕ+ π)− rM cos(θM − ϕ)

σ

)]
dϕ,

(11)

where Φ is the cumulative distribution function
of the standard normal distribution, i.e.

∀t ∈ R, Φ(t) :=

t∫
−∞

1√
2π
e−u

2/2 du.

Proof By definition of the support function of
K, a line of polar coordinates (ρ, ϕ) meets the
set K if and only if −sK(ϕ+ π) ≤ ρ ≤ sK(ϕ).
As a consequence we have:

µg(D ∩K 6= ∅) =
π∫

ϕ=0

sK(ϕ)∫
−sK(ϕ+π)

g(ρ, ϕ)dρdϕ.

Using the change of variable ρ 7→ ρ−rM cos(ϕ−θM )
σ ,

we get

µg(D ∩K 6= ∅) =
π∫

ϕ=0

1

π

(sK(ϕ)−rM cos(ϕ−θM ))/σ∫
(−sK(ϕ+π)−rM cos(ϕ−θM ))/σ

1
√
2π
e−ρ

2/2dρdϕ,

which is the announced result. ut
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Fig. 5 Illustration of the condition for a line with
an angle parameter ϕ to meet both convex sets K1

and K2 of respective support function sK1
= p1

and sK2
= p2.

Proposition 4 Let K1 and K2 be two closed
bounded convex sets with respective support func-
tion sK1 and sK2 . The measure, under the Gaus-
sian law µg, of the set of lines meeting both K1

and K2 can be written as

µg(D ∩K1 6= ∅ and D ∩K2 6= ∅) =

1

π

π∫
ϕ=0

1{α(ϕ)≤β(ϕ)}

[
Φ

(
β(ϕ)− rM cos(θM − ϕ)

σ

)

− Φ

(
α(ϕ)− rM cos(θM − ϕ)

σ

)]
dϕ,

where the two functions α and β are defined
by:

α(ϕ) = max(−sK1
(ϕ+ π),−sK2

(ϕ+ π))

and β(ϕ) = min(sK1
(ϕ), sK2

(ϕ)).

Proof As illustrated on Figure 5, the lines with
an angle ϕ that meet both convex sets K1 and
K2 are those satisfying the following condi-
tions :

− sK1
(ϕ+ π) ≤ ρ ≤ sK1

(ϕ)

and − sK2
(ϕ+ π) ≤ ρ ≤ sK2

(ϕ).

These conditions are compatible if and only
if α(ϕ) ≤ β(ϕ). And when they are compatible

they sum up into the single condition

α(ϕ) ≤ ρ ≤ β(ϕ). (12)

The final result is then obtained by integrating
over ϕ:

µg(D ∩K1 6= ∅ and D ∩K2 6= ∅) =
π∫

ϕ=0

1{α(ϕ)≤β(ϕ)}

β(ϕ)∫
α(ϕ)

g(ρ, ϕ) dρ dϕ,

and using again, as in the previous proposition,
the change of variable ρ 7→ ρ−rM cos(ϕ−θM )

σ .
ut

As a direct consequence of Proposition 3,
we can compute the measure, under µg, of the
set of lines that meet any disk B(Q, r) of cen-
ter Q and radius r. Indeed, we first notice that
the support function of B(Q, r) is given by
sB(ϕ) = rQ cos(θQ − ϕ) + r, where (rQ, θQ)

are the polar coordinates of Q. Then a sim-
ple computation (using trigonometric formu-
las and the fact that we integrate a periodic
function on a period) shows that we get

µg(D∩B(Q, r) 6= ∅) =
1

π

π∫
0

[
Φ

(
r − d(M,Q) cosϕ

σ

)

− Φ
(
−r − d(M,Q) cosϕ

σ

)]
dϕ, (13)

where d(M,Q) is the usual Euclidean distance
between the point of convergence M and the
center Q of the disk.

A particular case of the above results oc-
curs when we take for the disk the image do-
main Ω = B(0, RI), and it simplifies into:

µg(D ∩Ω 6= ∅) =
1

π

π∫
0

[
Φ

(
RI − rM cosϕ

σ

)

− Φ
(
−RI − rM cosϕ

σ

)]
dϕ. (14)

Thanks to Formula (13) we can compute
the probability under the Gaussian measure
that a random line meets an interior region V
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that, we recall, is chosen to be a disk of radius
r and center x ∈ Ω. For the exterior regions,
they are of two types: bounded or not. The
bounded exterior regions are trapezoids and to
apply Proposition 4, we need to compute α(ϕ)
and β(ϕ). They are simply related to the pro-
jections of the four vertices of the trapezoid on
the line of angle ϕ passing through the origin 0

of the image domain Ω = B(0, RI). More pre-
cisely, if the region is between two distances d1
and d2 from 0 and two angles θ1 and θ2, then
we have

α(ϕ) = max(−RI , min
i,j=1,2

{di cos(θj − ϕ)})

and β(ϕ) = min(RI , max
i,j=1,2

{di cos(θj−ϕ)}).

For an unbounded exterior region starting at
distance d∞, we can still use the formula of
Proposition 4. We simply need to slightly mod-
ify the definitions of α(ϕ) and β(ϕ) such that

α(ϕ) = max(−RI , min
j=1,2

{d∞ cos(θj − ϕ)})

and β(ϕ) = min(RI ,max
j=1,2

{d∞ cos(θj−ϕ)}).

2.5 Asymptotic behavior of the Gaussian law

As we already mentioned it, the Gaussian dis-
tribution on lines is given by two parameters:
the pointM of convergence and the “precision”
σ of the convergence. In this section, we are
interested in the influence of these parameters
and more precisely in the asymptotic behavior
of the measure of lines meeting a fixed convex
set K in one the three following situations:
1. The parameter σ goes to infinity. In this
case we show that the Gaussian measure be-
haves (in some sense that is precisely defined
below) like the uniform measure on lines.
2. The parameter σ goes to 0. Then the Gaus-
sian measure degenerates and we show that it
converges (here again, in some sense that is
defined below) to the Dirac measure where all
lines pass through the point M .
3. The point M goes to infinity, in the sense
that θM is fixed while rM goes to infinity. In

this case, the Gaussian measure degenerates
into the Dirac measure where all lines are par-
allel and uniform in that direction.

All these results match the intuition, and
they are precisely stated in the following theo-
rem. Since the proofs are rather technical, they
are postponed to the Appendix.

Theorem 2 (Asymptotic behavior of the
Gaussian law) Let g be the density function
g(ρ, ϕ) = 1

π
√
2πσ

e−(ρ−rM cos(θM−ϕ))2/2σ2

on lines.
We then have the three following results.

1. For any bounded closed convex set K of the
plane, as σ goes to +∞, we have

µg(D ∩K 6= ∅) =
1

π
√
2πσ

2π∫
0

sK(ϕ)dϕ+O

(
1

σ2

)

=
1

π
√
2πσ

PerK +O

(
1

σ2

)
.

As a direct consequence, this implies that

µg(D ∩K 6= ∅)
µg(D ∩Ω 6= ∅)

−→
σ→+∞

PerK

2πRI

=
µ1(D ∩K 6= ∅)
µ1(D ∩Ω 6= ∅)

,

where dµ1 = dρdϕ is the uniform measure
on lines.

2. Given any bounded closed and smooth (i.e.
with a smooth support function) convex set
K of the plane, as σ goes to 0, we have

µg(D ∩K 6= ∅) −→
σ→0+

µh(D ∩K 6= ∅)

=
1

π

π∫
0

1{−sK(ϕ+π)≤rM cos(θM−ϕ)≤sK(ϕ)} dϕ,

where here we denote dµh = h(ρ, ϕ)dϕ with
h(ρ, ϕ) = 1

π δρ=rM cos(θM−ϕ).
3. For every bounded closed convex set K of

the plane, as rM goes to +∞, we have

µg(D ∩K 6= ∅) =
1

πrM
(sK(θM+π

2 )+sK(θM−π2 ))+o
(

1

rM

)
.
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And as a direct consequence,

µg(D ∩K 6= ∅)
µg(D ∩Ω 6= ∅)

−→
rM→+∞

µz(D ∩K 6= ∅)
µz(D ∩Ω 6= ∅)

=
sK(θM + π

2 ) + sK(θM − π
2 )

2RI
,

where dµz = z(ρ, ϕ)dρ with z(ρ, ϕ) = δ
ϕ=θM±

π
2
.

3 Estimation of a Gaussian mixture
model from lines in an image

The detection results obtained by an a con-
trariomethod are directly related to the choice
of the “naive” background noise model. This
naive noise model should represent the “nor-
mal” model in which no detection is expected.
For instance in mammograms, linear structures
converge roughly to the nipple, this is a “nor-
mal” convergence and therefore it should not
be detected as a potential lesion. The solution
we propose in this article is to take into ac-
count this principal convergence in the a con-
trario model. The model we choose is a para-
metric mixture model, with a principal conver-
gence term and a uniform term, conditioned to
meet the image domain Ω, and that we will es-
timate directly from the set of lines.

More precisely, we assume that the distri-
bution on lines we want to estimate is of the
form:

fp,M,σ(ρ, ϕ) = 1{D(ρ,ϕ)∩Ω 6=∅}×[
1− p
PerΩ

+
pe−(ρ−xM cosϕ+yM sinϕ)2/2σ2

π
√
2πσZM,σ(Ω)

]
(15)

The above formula contains two terms, the
first one is the uniform measure, the second
one is the Gaussian model introduced in Sec-
tion 2.3. Both density functions are conditioned
on the set of lines that meet the image do-
main Ω. The term PerΩ stands for the perime-
ter of the image domain. When the image do-
main is the disk of radius RI and center 0,
then we have PerΩ = 2πRI , and the condi-
tion D(ρ,ϕ) ∩ Ω 6= ∅ is equivalent to |ρ| ≤ RI .

In the second term, we use again the Gaussian
measure µg on (ρ, ϕ) given by

dµg(ρ, ϕ) = gM,σ(ρ, ϕ)dρdϕ

=
1

π
√
2πσ

e−(ρ−xM cosϕ+yM sinϕ)2/2σ2

dρdϕ,

where (xM , yM ) are the coordinates of a point
M towards which a proportion p of the lines
converges (up to a “precision” σ). The con-
stant ZM,σ(Ω) in Equation (15) is given by
ZM,σ(Ω) = µg(D(ρ,ϕ)∩Ω 6= ∅). It is the Gaus-
sian measure of the set of lines that meet the
image domain Ω. Notice that this constant
ZM,σ(Ω) has already been explicitly calculated
in Section 2.3 with Formula (14).

To estimate the parameters of a density of
the form (15) from a set of lines, we choose to
do it in two steps:

1. Estimation of the point of convergence M .
This point is chosen to be the center of
the most meaningful region of convergence
(i.e. with the smallest NFA) under the uni-
form a contrario noise model dµ1 = dρdϕ

and where multiple scales are used (as de-
scribed in Section 2.2).

2. Once the pointM is estimated, we proceed
to the simultaneous estimation of both pa-
rameters p and σ by maximizing the log-
likelihood on the variable

ρ̃ = ρ− xM cosϕ+ yM sinϕ,

which is the signed distance of the lineD(ρ,ϕ)

to the point M .

When a line D(ρ,ϕ) follows the distribu-
tion fp,M,σ defined by Equation (15), then the
marginal law followed by the variable ρ̃ can
easily be calculated. We denote it by hp,σ (the
point M is now assumed to be fixed) and, in a
way similar to Proposition 2, it is given by:

hp,σ(ρ̃) =[
1− p
2πRI

+
p

π
√
2πσZM,σ(Ω)

e−ρ̃
2/2σ2

]
× J(ρ̃)
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where J is a function independent of p and σ.
More precisely, J is given by

J(ρ̃) =

π∫
0

1{D(ρ,ϕ)∩Ω 6=∅} dϕ

=

π∫
0

1{|ρ̃+xM cosϕ−yM sinϕ|≤RI} dϕ.

Then, given N lines in the images, the log-
likelihood of (p, σ) given the observed variables
ρ̃1, ..., ρ̃N is

LL(p, σ|ρ̃1, ..., ρ̃N ) :=

N∑
i=1

log hp,σ(ρ̃i). (16)

We consider it as a 2-variable function and we
estimate its maximum directly (by an exhaus-
tive search on discretized values of p and σ),
which gives us the “most likely” values of p and
σ.

Once a Gaussian-uniform mixture model
of the form (15) has been estimated, we run
the a contrario detection of convergence with
the estimated model as the noise model. In
this anisotropic noise model, one needs to cal-
culate the probability pfp,M,σ (V ) that a line
D meets a region V under the model fp,M,σ.
Formula (1) shows that it uses both measures
µfp,M,σ (D ∩ V 6= ∅ and D ∩Ω 6= ∅) and
µfp,M,σ (D∩Ω 6= ∅). This last measure is equal
to 1 since fp,M,σ is a density function on the
lines that meet Ω. Whereas the first measure
is given by :

µfp,σ (D ∩ V 6= ∅ and D ∩Ω 6= ∅) =
(1− p)
2πRI

µ1(D ∩ V 6= ∅ and D ∩Ω 6= ∅)

+
p

ZM,σ(Ω)
µgM,σ (D∩V 6= ∅ and D∩Ω 6= ∅).

The two terms above are then simply com-
puted by respectively the formulas of Theorem
1 and of Proposition 4.

Examples of the whole procedure (detec-
tion under the uniform noise model, estima-
tion of a mixture model and a contrario detec-
tion under this estimated anisotropic model)
are given in the next section.

4 Examples

We present here examples with three different
types of images: a synthetic image, a “natural”
image and a mammogram. For each example
are displayed:

1. the original image with the set of line seg-
ments detected (or simulated),

2. the set of supporting lines,
3. − log NFA1, where NFA1 is the number of

false alarms against the uniform model for
each interior region and, when relevant, for
each exterior region,

4. the estimated point M of principal conver-
gence,

5. the log-likelihood function LL(p, σ),
6. − log NFAfp̂,M,σ̂ , whereNFAfp̂,M,σ̂ is the num-

ber of false alarms of the regions against
the estimated mixture model.

Figure 6 is a synthetic example where there
are two convergences but one is “stronger” than
the other one. This main convergence is the
most meaningful one under the uniform model.
But then, once this principal convergence is in-
tegrated into the a contrario mixture model by
the proposed procedure, the secondary conver-
gence appears as the most meaningful event
whereas the principal one is no longer a mean-
ingful event.

On the flower image of Figure 7 there is a
clear principal convergence at the center of the
flower. It is indeed detected as the most mean-
ingful region under the uniform distribution
on lines. Then, against the estimated mixture
distribution, there are no meaningful region at
all. One can therefore say that, in this sense,
the estimated model is a better description of
the distribution of lines in this image than the
uniform model.

On Figure 8, we illustrate the result of the
whole procedure on a mammogram. On this
mammogram, there is a very meaningful con-
vergence around the nipple, which is normal
since the normal linear structures visible in
mammograms (fibrous tissue patterns and blood
vessels) are roughly oriented towards this point
in a normal breast tissue. Once this principal
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Fig. 6 (a) We simulated N = 300 straight lines
with a parametric mixture model with two Gaus-
sian terms and one uniform term: the main con-
vergence is centered in (xM , yM ) = (−100, 14)
with a standard variation σ = 20 and a weight
p = 0.4, and the secondary convergence has center
(xM ′ , yM ′) = (114, 28), p′ = 0.2 and σ′ = 10. The
uniform term has thus weight 1− p− p′ = 0.4. (b)
Image of the log-likelihood as a function of p and
σ. It is maximal for (p̂, σ̂) = (0.37, 17). (c) Image
of − log NFA1 showing that the main convergence
is detected as the most meaningful region whereas
the secondary convergence is not detected under the
uniform model. (d) Image of − log NFAfp̂,M,σ̂ , show-
ing that, under the estimated distribution fp̂,M,σ̂,
the secondary convergence is the most meaningful
region of convergence whereas the principal conver-
gence is no longer meaningful.

convergence is integrated in the mixture model
it is no longer detected as significant. However
another convergence appears: it is highlighted
when the a contrario model changes (see the
log NFA scales on the images). This could be
a suspicious region. However, lesions are local
events and detecting them using the lines in
the image may not be adapted. We therefore
have to use the line segments themselves (and
not their support lines since these lines “for-
get” where the line segments were). This will
be the aim of the next section.
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Fig. 7 (a) The original flower images, with N =
332 line segments detected (by the LSD Algo-
rithm). The radius of the image is RI = 99.
(b) The set of support lines. (c) The same set
of lines seen as points (ρn, ϕn) in [−RI , RI ] ×
[0, π). (d) Image of the log-likelihood. It is maxi-
mal for (p̂, σ̂) = (0.53, 13). (e) Image of − log NFA1.
Against the uniform model the most meaning-
ful point is (xM , yM ) = (−3, 14). (f) Image of
− log NFAfp̂,M,σ̂ . There is no meaningful region
against the parametric mixture model.

5 Detection of local convergences

In this section, we will be interested in the de-
tection of local convergences (as opposed to
global ones in the previous section). Indeed,
in many applications (for instance in mammo-
grams), the convergences we are interested in
are local ones, in the sense that only the way
the elementary linear structures are organized
in a neighborhood of a given point matters,
even if these elementary linear structures may
have a global “natural” orientation. Therefore,
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Fig. 8 (a) The image radius is RI = 274. The
number of line segments is N = 1781. These are
the line segments detected by the LSD Algorithm
of [6]. (b) Image of the log-likelihood. The estimated
parameter values are (p̂, σ̂) = (0.62, 145). (c1) and
(c2): Images of − log NFA1 on respectively interior
and exterior regions. The most meaningful point is
inside the image domain, it is the point (xM , yM ) =
(226, 94). (d1) and (d2): Images of − log NFAfp̂,M,σ̂
on respectively interior and exterior regions. This
second run of the a contrario method gives a new
convergence inside the image, whereas no exterior
region is meaningful.

as we did it in the previous section for lines, we
will introduce here an anisotropic a contrario
model on line segments that is a mixture of
a uniform distribution on lines segments and
of a second anisotropic “Gaussian” term that
models the natural convergence of some of the
segments to a particular point in the image
domain.

5.1 An anisotropic law on line segments

The elementary objects we deal with in this
section are line segments. A line segment S
is given by the three coordinates (xS , yS , θ)

where xS = (xS , yS) are the cartesian coor-
dinates of the center of the line segment S and
where θ ∈ [−π2 ,

π
2 ) is the angle between the

horizontal axis and the line segment. Note that
this description of line segments doesn’t take
their length into account. The reason for this is
that here, in the detection of convergence, we
are only interested in their position and orien-
tation, and we don’t need their length (they
are all assumed to be “small segments”).

The uniform model on the line segments is
given by the measure

dµ1 = dxSdySdθ. (17)

It corresponds to a uniform distribution for the
center xS of the segment, a uniform distribu-
tion also for its orientation θ, and both be-
ing independent. A natural question is then to
give the link between the distributions on line
segments and the distributions on their sup-
porting lines. In particular, we may ask: does
a uniform distribution on line segments imply
a uniform distribution on their support lines ?
To explore this, we first derive the relation-
ship between the coordinates (xS , yS , θ) of the
line segments and those (ρ, ϕ) of its support
line. The support line (ρ, ϕ) of the segment is
parallel to the vector vϕ = (sinϕ, cosϕ) with
ϕ = θ+ π

2 . An origin point on the support line
is taken as being the orthogonal projection of
the origin 0 of the domain Ω on the line. The
parameter that gives the segment position on
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the support line is denoted by t and therefore
the segment can be described by the new sys-
tem of coordinates (ρ, ϕ, t). See Figure 9 for an
illustration of this. The change of coordinates
can be written by
xS = ρ cosϕ+ t sinϕ

yS = −ρ sinϕ+ t cosϕ

θ = ϕ− π
2 .

(18)

θ

S

M

xS

�
ρ

t

0

Fig. 9 Parametrization of the segments with
(xS , θ) or (ρ, ϕ, t), and angle ψ between the seg-
ment and a global convergence point M .

The Jacobian of this change of coordinates
is equal to 1. It implies that every density of
probability f̃ on the variables (xS , yS , θ) leads
to a density f on (ρ, ϕ, t) related to f̃ by

f(ρ, ϕ, t) = f̃(xS , yS , θ)

= f̃(ρ cosϕ+t sinϕ,−ρ sinϕ+t cosϕ,ϕ−π
2
).

In particular, if f̃ is the uniform law on (xS , yS , θ)

conditioned to be in the image domain, that is
conditioned to x2S + y2S ≤ R2

I , then the law on
(ρ, ϕ, t) is given by

f(ρ, ϕ, t) = 1{ρ2+t2≤R2
I}1{ϕ∈[0,π)}.

By integration over t we find that the marginal
density of probability on support lines (ρ, ϕ) is
the function

(ρ, ϕ) 7→ 2
√
R2
I − ρ21{ρ2≤R2

I}1{ϕ∈[0,π)}, (19)

which is not the uniform law on lines condi-
tioned to meet the image domain. Indeed, as
we already saw it in Section 2.2, the uniform

law on lines was given by the density (ρ, ϕ) 7→
1{ρ2≤R2

I}1{ϕ∈[0,π)}. The law on lines induced
by uniformly distributed segments may look
paradoxical since if we count, in an informal
way, the “number” of points at a distance be-
tween ρ and ρ+dρ from 0, then we find that it
is proportional to 2πρdρ. This increases with
ρ, whereas the density given by Equation (19)
behaves the opposite way: it decreases with ρ.
The explanation is that line segments are not
only points, we have to add an orientation.
Therefore the “number” of segments such that
their supporting line is at a distance between ρ
and ρ+dρ from 0 is proportional to the number
of points lying in a strip intersecting the disk,
which area is roughly 2

√
R2
I − ρ2dρ. An illus-

tration of the phenomenon that uniformly dis-
tributed segments don’t imply uniformly dis-
tributed lines is given on Figure 10. On this
figure, we show how uniformly distributed seg-
ments create meaningful convergences under
the uniform noise model on lines. Such con-
vergences would not exist if the support lines
were uniformly distributed.
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Fig. 10 Left: 1000 uniformly distributed line seg-
ments on the image domain. Right: Image of
− log NFA1 under the uniform distribution on line.
Every point such that − log NFA1 ≥ 0 is the center
of a 1-meaningful region. There are many meaning-
ful events, mainly close to the image center, corre-
sponding to small values of ρ, which are more fre-
quent than they would be if the lines were uniformly
distributed on (−RI , RI)× [0, π).

Now, in order to include more information
in the a contrariomodel (in particular the exis-
tence of a natural convergence, as in the case of
mammograms), we have to define some anisotropic
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model on the line segments in a way similar
to the Gaussian law on lines in Section 2.3.
The model considered here is again a para-
metric mixture of the uniform law on line seg-
ments and of another term, which is still called
“Gaussian”, modelling the convergence to a point
M . In this second term we will need the anal-
ogous, for angular values, of the Gaussian dis-
tribution on R. It is called the von Mises dis-
tribution or sometimes the circular normal dis-
tribution. It is defined by:

Definition 3 (von Mises distribution on
[−π2 ,

π
2 ) ) The von Mises distribution on [−π2 ,

π
2 )

is given by its density of probability on [−π2 ,
π
2 ),

which is :

∀t ∈ [−π2 ,
π
2 ), gκ(t) =

eκ cos(2t)

2πI0(κ)
, (20)

where κ is a parameter inversely proportional
to the “concentration” or “width”, and I0 is the
modified Bessel function of order 0. This law is
symmetric and it is the uniform law on [−π2 ,

π
2 )

when κ = 0. See also Figure 11 to visualize the
shape of the von Mises distribution for differ-
ent values of κ.
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Fig. 11 The von Mises distribution for different
values of κ.

Given a point M in the image domain, as
in the case of lines, we want to model here
the fact that a proportion p of the line seg-
ments converges towards M . To take this into

account, we first consider the angle ψ between
the line segment (xS , yS , θ) and the line de-
fined by the two points xS = (xS , yS) and M .
See Figure 9. Then we make the assumption
that the density of ψ is given by the mixture
distribution defined for all u ∈ [−π2 ,

π
2 ) by

hp,κ(u) = (1− p) 1
π
+ p

eκ cos(2u)

πI0(κ)
. (21)

The second term is the one describing the con-
vergence towardsM , and it makes small values
of ψ more likely. The first term is simply the
uniform law on [−π2 ,

π
2 ). The angles ψ and θ

are related by the equation

θ = ψ + arctan

(
yM − yS
xS − xM

)
(mod π), (22)

so that the law of θ knowing (xS , yS) is easily
derived from the law of ψ. More precisely, the
density of probability of θ knowing (xS , yS) is
the function, defined on [−π2 ,

π
2 ), by

t 7→ hp,κ

(
t− arctan

yM − yS
xS − xM

)
, (23)

where the function hp,κ is considered as being
π-periodic. Notice that when the parameter p
is null, then ψ follows the uniform law.

Finally, the whole a contrario distribution
on line segments is: the line segments are in-
dependent, the position (xS , yS) is uniformly
distributed on the image domain Ω, and the
law of θ knowing (xS , yS) is given by the mix-
ture distribution of Equations (21) and (23).

Estimation. As in Section 3 we address the is-
sue of the estimation of such models given a
real image and its line segments {(x(n)S , y

(n)
S , θn)},

with n = 1, . . . , N . We first choose to estimate
the point M of global convergence the same
way as in Section 3, by minimizing the number
of false alarms against the uniform model on
the support lines, and setting M as the cen-
ter of the most meaningful region among all
scales r. Then the parameters p and κ are es-
timated by maximizing the log-likelihood on
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(p, κ) given the data ψ1, . . . , ψN in a way sim-
ilar to the estimation of p and σ in Section
3. The log-likelihood on (p, κ) given the data
ψ1, . . . , ψN is:

LL(p, κ|ψ1, . . . , ψN ) =

N∑
n=1

log

(
(1− p)

1

π
+ p

eκ cos(2ψn)

πI0(κ)

)
,

where

∀n, ψn = θn − arctan

(
yM − y(n)S

x
(n)
S − xM

)

Then log-likelihood maximum is found by an
exhaustive search after the discretization of
the set of parameters (p, κ).

5.2 The a contrario framework for local
convergences

r
αr

B (x , r )

Fig. 12 Geometric description of a local conver-
gence: we count the number of line segments in the
annulus and among them, the ones such that their
support line meets the central disk B(x, r).

The local convergences are searched under
the form of annuli denoted by A(x, r, α) that
are rings delimited by two concentric circles of
center x and respective radius r and αr, where
α > 1 (and denoted respectively by C(x, r) and

C(x, αr)). For each potential convergence (an-
nulus) we consider the variables N(x, r, α) and
K(x, r, α) which are respectively the number
of line segments between the two circles C(x, r)
and C(x, αr) and the number of line segments
between the two circles whose support lines
meet the central disk B(x, r). See also Figure
12 for an illustration of this.

Local convergences in an image are likely to
have large values for both variables K(x, r, α)

and N(x, r, α). The a contrario method pro-
vides the threshold on these variables in order
for a potential convergence to be meaningful.

Definition 4 Let N segments (x
(i)
S , y

(i)
S , θi),

1 ≤ i ≤ N , be observed in an image domain Ω,
assumed to be a disk of radius RI . The number
of false alarms of an annulus A(x, r, α) under
a probability density f on segments is defined
by

NFAf (x, r, α) =

Na · B(N(x, r, α),K(x, r, α), pf (x, r, α)),

(24)

where Na is the number of tested annulus, B
denotes the tail of the binomial distribution
and pf is the probability of convergence to-
wards the center of the annulus. It is given by

pf (x, r, α) =

∫
Ω×[0,π] 1Ex,y1Eθf(xS , yS , θ) dxSdySdθ∫
Ω×[0,π] 1Ex,yf(xS , yS , θ) dxSdySdθ

,

where Ex,y and Eθ are respectively the events

Ex,y = {r ≤ ‖(xS , yS)− x‖ ≤ αr} and

Eθ = {|θ−arctan
yS − yx
xS − xx

| ≤ arcsin
r

‖(xS , yS)− x‖
}.

Let ε > 0 be a “small number” (less than 1),
then an annulusA(x, r, α) such thatNFAf (x, r, α) <

ε is said to be ε-meaningful.

Proposition 5 The above definition indeed de-
fines a number of false alarms, in the sense
that: in an image where N line segments are
following the a contrario model with density f ,
then the mean number of ε-meaningful events
is less than ε.



18 Agnès Desolneux, Fanny Doré

Proof This proposition can be proved in way
analogous to Proposition 1. Notice however that
here there are two random variables:N(x, r, α)

and K(x, r, α), and not only just k(V ) as in
Proposition 1. Notice also that the definition
of NFA used here is analogous to the one of [8]
where a “context” information is used. ut

We will mainly use the above number of
false alarms NFAf with two different probabil-
ity densities f . We will first consider the case
of the uniform distribution on positions and
orientations for segments, which is equivalent
to say that we take

f1(xS , yS , θ) =
1

π2R2
I

1{x2
S+y

2
S≤R2

I}.

Then the probability of convergence has a sim-
ple expression. Indeed using polar coordinates
and an integration by parts, we get

p1(x, r, α) =

2

π(α2 − 1)

[
α2 arcsin

(
1

α

)
+
√
α2 − 1−

π

2

]
.

(25)

The second case we will consider is the one of
a mixture density of the form

f(xS , yS , θ) =

1

πR2
I

hp,κ

(
θ − arctan

yM − yS
xS − xM

)
1{x2

S+y
2
S≤R2

I},

where hp,κ is the uniform/von Mises mixture
distribution defined by Equation (21). Here
the point M and the parameters p and κ are
estimated from the line segments of an image,
as described in the previous section.

5.3 Examples

As in the case of global convergences, we will
here illustrate the proposed method on three
examples: a synthetic set of line segments, a
natural image and a mammogram.

On Figure 13, we illustrate the influence of
the a contrario background noise model on a
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Fig. 13 Synthetic example: this set of line seg-
ments contains a main convergence and a sec-
ondary one (top image). The middle image repre-
sents − log(NFA1), where NFA1 is the number of
false alarms of local convergences under the uni-
form distribution on line segments: only the main
convergence is meaningful. The bottom image rep-
resents − log(NFAf ), where NFAf is the number
of false alarms of local convergences under the von
Mises distribution on line segments: only the sec-
ondary convergence is meaningful.
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synthetic set of line segments. Under the uni-
form distribution on line segments, the main
point of convergence is the only meaningful lo-
cal convergence (middle image). Whereas un-
der the von Mises distribution, this main con-
vergence is not meaningful anymore and the
secondary convergence becomes the only mean-
ingful local convergence. In this example, the
main point M of global convergence and the
parameters of the von Mises distribution are
known (and we don’t estimate them).

On Figure 14, we show the results of the
proposed approach on a natural image. This
image contains many geometric structures, and
a pointM of global convergence is found below
the center of the image (represented as a red
star). The histogram of the values of ψ (an-
gle between the support line of the segment
and the line defined by the center of the seg-
ment and M) has a narrow mode in 0. The
red curve on the histogram represents the es-
timated mixture distribution. On the second
line of the figure, we show on the left the im-
age of − log(NFA1), where NFA1 is the num-
ber of false alarms under the uniform law on
line segments. The point M of global conver-
gence is also here the most meaningful local
convergence. On the right, we show the image
of − log(NFAf ), where NFAf is the number
of false alarms under the estimated mixture
distribution on line segments. Notice how the
point M is now “erased” (not meaningful any-
more) under the mixture distribution.

On Figure 15, we perform exactly the same
experiments: estimation of the pointM , shown
as a red star; estimation of a mixture uni-
form/von Mises distribution for the angles ψ
and computation of the number of false alarms
for local convergences under both: the uniform
distribution on line segments and the estimated
one. This image is a mammogram and it is not
as geometric as the natural image of Figure 14.
The point M that is found as the most mean-
ingful global convergence is close to the nip-
ple but they do not coincide. This point M is
also the most meaningful point of local conver-
gence under the uniform distribution on line
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Fig. 14 First line: original image (Beaubourg cen-
ter), its line segments, and the estimated point M
of global convergence (represented as a red star).
On the right: histogram of angles ψ and the esti-
mated mixture distribution plotted in red. Second
line: on the left, image of − log(NFA1) under the
uniform law on line segments, and on the right, im-
age of − log(NFAf ) under the estimated mixture
distribution on line segments.

segments, and it could be the center of a sus-
picious region. Then under the estimated mix-
ture distribution, another point becomes the
most meaningful one. This example illustrates
the hierarchical organization of local conver-
gences: we start by detecting the most mean-
ingful one, then we integrate it to the model
and this allows us to enhance the secondary
convergences.

5.4 From Theory to Practice

As pointed out by one of the reviewers of the
paper, looking at Figure 15, one may wonder
“whether the method works at all”. Indeed, on
that example, the point with lowest NFA1 is
not on the nipple, and other detections are not
improved when using NFAf instead of NFA1.
For the point with lowest NFA1, we don’t use
any spatial information (like being on the bound-
ary of the breast, for instance), and therefore,
in some cases, this point is not on the nipple.
This point only corresponds to the point that
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Fig. 15 First line: original image (a mammogram),
its line segments, and the estimated point M of
global convergence (represented as a red star). On
the right: histogram of ψ and the estimated mixture
distribution plotted in red. Second line: on the left,
image of − log(NFA1) under the uniform law on line
segments, and on the right, image of − log(NFAf )
under the estimated mixture distribution on line
segments.
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Fig. 16 Original mammogram, its line segments,
and a pointM of global convergence (red star, man-
ually chosen). Plot of the probabilities p1, pf , q1
and qf as a function of the distance between x
and M . Image of − log NFA⊥f + logNFA⊥1 , show-
ing the enhancement of the detections when using
the anisotropic a contrario model.
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would be in the highest position in a kind of hi-
erarchical description of the local convergences
of the image. Now, for the other detections, the
probability of convergence pf (x, r, α) only de-
pends on the distance of x fromM , it decreases
and becomes very close to the uniform proba-
bility of convergence p1(x, r, α) as the distance
increases. This explains why NFA1 and NFAf
are almost the same for detections that are far
away the point M .

Therefore, one can ask if our approach can
be used in practice. We have presented here
a theoretical framework, and the validation of
this approach for the detection of stellate le-
sions in mammograms remains to be done. Ide-
ally, we would like to prepare a companion pa-
per, intended to a medical imaging audience,
showing the interest of our approach, using for
instance ROC curves on a dataset of annotated
mammograms.

Now, we can give a hint on the features of
stellate patterns that could be used, and then
need to be validated by a statistical learning
approach on a dataset, as it is done for in-
stance by Karssmeijer et. al in [10]. For an an-
nulus A(x, r, α), we have already considered
two features, namely its NFA1 and its NFAf .
Now, we could consider a second type of fea-
tures, counting now the number of linear struc-
tures that have their center at a distance larger
than r from the line (Mx) and still converg-
ing to x. This is, in spirit, similar to the sec-
ond feature defined by Karssmeijer et. al in
[10], where they consider the directions where
the oriented pixels come from. Thus, a second
number of false alarms of an annulus A(x, r, α)
under a probability density f on segments can
be defined by

NFA⊥f (x, r, α) =

Na · B(N⊥(x, r, α),K⊥(x, r, α), qf (x, r, α)),
(26)

where, as before, Na is the number of tested
annulus, B denotes the tail of the binomial dis-
tribution and qf is now the probability of con-
vergence towards the center of the annulus, for

a point that is not in the “main direction”. It
is given by

qf (x, r, α) =

∫
Ω×[0,π] 1E⊥x,y1Eθf(xS , yS , θ) dxSdySdθ∫
Ω×[0,π] 1Ex,yf(xS , yS , θ) dxSdySdθ

,

where E⊥x,y and Eθ are respectively the events

E⊥x,y = {r ≤ ‖(xS , yS)−x‖ ≤ αr and d((xS , yS), (Mx)) ≥ r}

and

Eθ = {|θ−arctan
yS − yx
xS − xx

| ≤ arcsin
r

‖(xS , yS)− x‖
}.

On Figure 16, we have plotted the four differ-
ent probabilities of convergence p1, pf , q1 and
qf as a function of the distance between x and
M . As we already pointed it out, p1 and pf
are almost equal when the distance is large.
Now, for q1 and qf , the situation is very dif-
ferent, since qf (red curve) is much lower q1
for large distances. As a consequence, we have
a enhancement of the detections when using
NFA⊥f compared to NFA⊥1 . This is illustrated
by the last image of Figure 16, that represents
− log NFA⊥f + logNFA⊥1 .

6 Conclusion and discussion

In this paper, we have proposed and studied
changes in the a contrario framework for the
detection of points of convergences of linear
structures in images. These convergences are
of two types : global (like vanishing points or
the normal convergence of linear structures in
mammograms), or local (like stellate patterns
in mammograms). For the global convergences
we considered the supporting lines of previ-
ously detected line segments and for local con-
vergences the line segments themselves were
considered. The a contrario noise model, which
is often chosen as the uniform independent dis-
tribution on linear structures, was changed into
an anisotropic model to take into account a
principal normal convergence of the linear struc-
tures. We proposed a parametric mixture model
with a uniform term and a “Gaussian” term
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modeling the principal convergence. The esti-
mation of such a model on a sample of linear
structures was addressed. The estimation of
the point of global convergence was solved by
detecting the most meaningful point of conver-
gence against the uniform model whereas the
remaining parameters were estimated by max-
imizing the likelihood. We tested the a con-
trario method on different images and in most
of them, the principal convergence detected
against the uniform model was no longer de-
tected against the estimated parametric model.
And sometimes new convergences were high-
lighted against the anisotropic model.
This procedure was devoted to improve the de-
tection of stellate lesions in mammograms, by
taking into account the normal convergence of
the linear structures towards the nipple. In-
deed against the uniform model this conver-
gence is often detected although it is a normal
convergence and shouldn’t be detected. By us-
ing the simple uniform model the meaningful
events are biased: the naive model should de-
scribe the normal distribution of linear struc-
tures in mammograms, and against this model
only abnormal patterns should be detected.

There are several future directions of re-
search for this work. A first point is that the
hypothesis of independence of the linear struc-
tures could be modified. Indeed, the line seg-
ments detected in images are often organised
in long chains (in natural images as well as
in mammograms). Even though the indepen-
dence hypothesis is convenient, it could be sup-
pressed by adding some correlation between
neighbouring line segments, in a way similar to
what is done by Myaskouvskey, Gousseau and
Lindenbaum in [13] for the detection of align-
ments. Under such a hypothesis, the detection
performances can indeed be improved, but the
computational complexity is much higher.
A second point is that the mixture model was
obtained by adding a “convergence term” to
the model. The convergence term was centered
on the most meaningful point against the uni-
form noise model. Such a procedure could be
carried on and we could add a second conver-

gence term, and then a third one, etc. This
would certainly make sense in particular in
man-made environment images, where there
are often two or three vanishing points. This
step-by-step enrichment of the noise model would
lead to a full (and not only up to the second
order as presented here) hierarchical descrip-
tion of the convergences in the image. A third
point, that is closely related to the previous
one, is that for the estimation of the a con-
trario model we have restrained ourselves to
a family of parametric Gaussian/uniform mix-
ture models (notice also that the theoretical
analysis of the proposed estimator could be
studied). However one may ask what happens
if there is no restriction on the form of the
estimated model. The only condition should
be that against the new model the principal
convergence (against the uniform model) is no
longer meaningful. Now, among all distribu-
tions that satisfy this condition which one is at
the same time “the most random” (for instance
in the sense of maximizing the entropy)? And
also, is it possible to define a model against
which there would be no detections? All these
questions were recently rised, in a similar frame-
work, in [4].
Finally, as we already emphazised it, we have
proposed here in this paper a theoretical and
methodological framework. It remains to turn
it into an effective detection algorithm of stel-
late patterns in mammograms and to perform
extensive tests on datasets of mammograms.
But such a goal requires a more accurate def-
inition of stellate lesions (besides the stellate
organization of spicules, there is also often a
dense mass in the center). As shown in the pa-
per of Palma et. al [16], the efficient detection
of potential lesions has to be performed using
the aggregation of several partial detectors. We
started in Section 5.4 explaining how to de-
fine features from NFA numbers, that could
be used in a statistical learning methodology
to validate the approach on a dataset of anno-
tated mammograms. Ideally, this would be the
aim of a companion paper, following this one.
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A Appendix: Proof of Theorem 2

We give, in this appendix, the proof of Theorem
2. We first recall the result of Proposition 3: let K
be a bounded closed convex set of the plane with
support function sK , then

µg(D∩K 6= ∅) =
1

π

π∫
ϕ=0

[
Φ

(
sK(ϕ)− rM cos(θM − ϕ)

σ

)

− Φ
( − sK(ϕ+ π)− rM cos(θM − ϕ)

σ

)
dϕ
]
,

where Φ is the cumulative distribution function of
the standard normal distribution, that is

∀t ∈ R, Φ(t) :=

t∫
−∞

1
√
2π
e−u

2/2 du.

Proof of case 1: σ goes to +∞
The proof uses the development of the function

Φ in the neighborhood of 0. For every x ∈ R we
have

Φ(x) =
1

2
+

1
√
2π
x+O(x2).

Therefore, taking first x = sK(ϕ)−rM cos(θM−ϕ)

σ
,

then x = −sK(ϕ+π)−rM cos(θM−ϕ)

σ
and computing

the difference, it comes:

Φ

(
sK(ϕ)− rM cos(θM − ϕ)

σ

)
− Φ

( − sK(ϕ+ π)− rM cos(θM − ϕ)
σ

)
=

1
√
2π

sK(ϕ) + sK(ϕ+ π)

σ
+O

(
1

σ2

)
,

where the term O
(

1
σ2

)
can be made independent of

ϕ because the support function sK is bounded.
Finally, the measure of the set of lines meeting the
convex set K under µg can be written:

µg(D ∩K 6= ∅) =
1

π
√
2πσ

2π∫
0

sK(ϕ)dϕ+O

(
1

σ2

)

=
1

π
√
2πσ

PerK +O

(
1

σ2

)
,

which is the announced result. ut

Proof of case 2: σ goes to 0
We will need the following elementary result.

Let gσ(x) := 1

σ
√

2π
e−x

2/2σ2

denote the 1D Gaus-
sian density of variance σ2. Then if w is a piecewise
continuous bounded function of the real variable,
we have

lim
σ→0+

∫
R

w(x)gσ(x) dx =
w(0+) + w(0−)

2
, (27)

where w(0+) := limx→0,x>0 w(x), resp. w(0−) :=
limx→0,x<0 w(x).
The proof of this result is simple. We first make the
change of variable y = x/σ, such that∫
R

w(x)gσ(x) dx =

∫
R

w(σy)g1(y) dy

=

0∫
−∞

w(σy)g1(y) dy +

+∞∫
0

w(σy)g1(y) dy.

And the result follows thanks to the dominated con-
vergence theorem and to the fact that the integral
of g1 on (0,+∞) or on (−∞, 0) is equal to 1

2
.

Now, the measure of the set of linesD that meet
the convexK with support function sK can be writ-
ten:

µgσ (D ∩K 6= ∅) =
1

π

π∫
0

∫
R

1IM(ϕ)(ρ)gσ(ρ)dρdϕ,

where for ϕ ∈ [0, π), we denote IM (ϕ) the interval

IM (ϕ) :=

[−sK(ϕ+π)−rM cos(θM−ϕ), sK(ϕ)−rM cos(θM−ϕ)].

Thanks to the result (27) it comes that for all ϕ ∈
[0, π)

lim
σ→0+

∫
R

1IM(ϕ)(ρ)gσ(ρ)dρ :=

lim
σ→0+

Hσ(ϕ) := H(ϕ),

where the function H is given by:

H(ϕ) =


0 if 0 /∈ IM (ϕ),
1
2

if 0 ∈ ∂IM (ϕ),

1 if 0 ∈ IM (ϕ) \ ∂IM (ϕ).

Moreover since the functionHσ converges pointwise
to H and since ∀ϕ ∈ [0, π), ∀σ > 0, |Hσ(ϕ)| ≤ 1 it
comes, thanks to the dominated convergence theo-
rem, that

lim
σ→0+

π∫
0

Hσ(ϕ)dϕ =

π∫
0

H(ϕ)dϕ.
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Therefore, we finally get:

lim
σ→0+

µgσ (D ∩K 6= ∅) =
1

π

π∫
0

H(ϕ) dϕ

=
1

π

π∫
0

1{−sK(ϕ+π)≤rM cos(θM−ϕ)≤sK(ϕ)} dϕ.

where the last equality comes from the fact that,
for a smooth bounded convex set K, the Lebesgue
measure of the set of ϕ ∈ [0, π) such that −sK(ϕ+
π) = rM cos(θM −ϕ) or sK(ϕ) = rM cos(θM −ϕ)}
is 0. ut

Proof of case 3: rM goes to +∞
Let K be a smooth bounded closed convex set

with support function sK . We then denote

FK(rM ) := µg(D ∩K 6= ∅) =

1

π

π∫
0

sK(ϕ)∫
−sK(ϕ+π)

1

σ
√
2π
e−(ρ−rM cos(θM−ϕ))2/2σ2

dρdϕ.

To find the equivalent of FK(rM ) as rM goes to
infinity, we first make the change of variable ψ =
ϕ − θM + π

2
. Thanks to the π-periodicity of the

function that is integrated in FK(rM ), we get

FK(rM ) =

1

π

π/2∫
−π/2

sK(ψ+θM− π

2
)∫

−sK(ψ+θM+ π

2
)

1

σ
√
2π
e−(ρ−rM sinψ)2/2σ2

dρdψ.

In a way similar to the Laplace’s method, when rM
goes to infinity, the above integral will “concentrate”
around the value ψ = 0. More precisely, let δ ∈
(0, π

2
), then define

Iδ :=

1

π

δ∫
−δ

sK(ψ+θM− π

2
)∫

−sK(ψ+θM+ π

2
)

1

σ
√
2π
e−(ρ−rM sinψ)2/2σ2

dρdψ

and

Jδ :=

1

π

∫
|ψ|>δ

sK(ψ+θM− π

2
)∫

−sK(ψ+θM+ π

2
)

1

σ
√
2π
e−(ρ−rM sinψ)2/2σ2

dρdψ.

In Iδ, we make the change of variable y = sinψ.
We then have dy =

√
1− y2dψ, and since y ∈

[− sin δ, sin δ] we can bound Iδ by

I′δ ≤ Iδ ≤
1

cos δ
I′δ

with

I′δ :=

1

π

sin δ∫
− sin δ

sK(arcsin y+θM− π

2
)∫

−sK(arcsin y+θM+ π

2
)

1

σ
√
2π
e−(ρ−rMy)2/2σ2

dρdy.

Then making a new change of variable x = rMy in
I′δ, we get

rMI′δ =

1

π

rM sin δ∫
−rM sin δ

sK(arcsin(x/rM)+θM− π

2
)∫

−sK(arcsin(x/rM)+θM+ π

2
)

e−(ρ−x)2/2σ2

σ
√
2π

dρdx.

Thanks to the dominated convergence theorem (we
recall that the support function sK is bounded), as
rM goes to infinity we have that

rMI′δ −→
rM→∞

1

π

∞∫
−∞

sK(θM− π

2
)∫

−sK(θM+ π

2
)

1

σ
√
2π
e−(ρ−x)2/2σ2

dρdx

=
1

π
(sK(θM +

π

2
) + sK(θM −

π

2
)).

Now we control the integral Jδ. We develop the
term (ρ− rM sinψ)2, and using again the fact that
sK is bounded, we get

0 ≤ Jδ ≤ e−(rM sin δ)2/2σ2

e(‖sK‖∞rM)/σ2

,

which shows that rMJδ goes to 0 as rM goes to
infinity.

Finally, putting all this together, we have: for
any ε > 0, fix δ in such a way that 1/ cos δ ≤ (1+ε).
Then for this fixed value of δ, there exist C > 0 such
that for all rM > C we have

(1− ε)
1

π
(sK(θM +

π

2
) + sK(θM −

π

2
)) ≤ rMIδ

≤ (1 + ε)2
1

π
(sK(θM +

π

2
) + sK(θM −

π

2
)),

and
0 ≤ rMJδ ≤ ε.

Summing Iδ and Jδ, we have the announced result
that is

rMFK(rM ) −→
rM→∞

1

π
(sK(θM+

π

2
)+sK(θM−

π

2
)).

ut
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