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ABSTRACT

Color palettes are an important tool for color image anal-
ysis, since they are the initial point of different techniques
such as quantization or indexing. This paper presents a new
method for the automatic construction of a color palette,
which adjusts dynamically its number of colors according
to the visual content of the image. The method is based
on appropriately segmenting the HSI color space, which is
achieved by individually partitioning the histograms asso-
ciated to each color component. As a result we obtain a
hierarchical color palette, which represents the color image
with a reduced number of colors.

1. INTRODUCTION

The human visual system (HVS) is a complex and precise
entity, it is able both to distinguish millions of colors and
to describe an image by naming a few colors. This last
characteristic derives from the HVS ability of grouping col-
ors with similar tonality and of assigning a unique name
to each group. Humans perform this process automatically
but, computationally, it is a very difficult task.

The simplest way for computationally describing a color
image is by means of its color palette which contains the
more representative colors in the image just like the palette
of a painter.

The color palette has different applications in many color
image fields. It is an important tool in color quantization
techniques, whose ultimate goal is to reduce the number of
colors of an image with minimum distortion ([1]). Another
application is color indexing, which is used both to com-
press color information ([2]) and to effectively retrieve in-
formation from image databases ([3]).
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In view of these applications, we deduce the importance
of obtaining a correct color palette, with a small number of
colors but enough to produce an acceptable image represen-
tation. Moreover the color palette construction must be an
automatic and fast process.

We present a new approach for the construction of the
color palette that takes into account these previous remarks.
This approach is based on the HSI color space properties
and the use of a novel and parameter-free technique for his-
tograms segmentation.

The paper is structured as follows. The basic ideas of
the method are exposed in the next section; in Section 3,
a new algorithm for histogram segmentation is presented;
Section 4 is devoted to display and comment some results
on color palette construction; the conclusions are presented
in the final section.

2. COLOR PALETTE CONSTRUCTION

As pointed out in the previous section our goal is, given any
color image, to automatically generate a palette that con-
tains the “more representative” colors in the image.

The notion of “representative color” must be clarified.
We start by choosing a color system representation, for that
we have several options: RGB, HSI, ���	�
�	���� etc. We decide
for HSI , since it separates pure color information (hue and
saturation) from brightness (intensity). Moreover, the no-
tions of hue, saturation and intensity are intuitive and have
a physical meaning ([4]).

Next, we want to partition the color space of the image
(that is, the set of all its colors) in a minimum number of
regions. For each region in this segmentation one color is
then selected to form the palette.

Several methods can be devised to segment the HSI co-
lor space. One option is to perform a 3D segmentation but
we take a different approach. From our study of color im-
ages we have concluded that not all the color components



(H, S, and I) have the same importance when comparing
two colors. For example, a slight variation in the hue com-
ponent may produce a big change in the perception of the
color, while a variation of intensity may be slightly per-
ceived. Therefore, it makes no sense to mix together the
3 components information in a 3D segmentation.

We make the following ordering of the color compo-
nents according to their relevance to the definition of col-
ors: hue, saturation, and intensity. Therefore, we propose
the following 3-steps segmentation method for partitioning
the HSI image space:

1. Consider the histogram of hue values for the colors
of the image. Partition this histogram using the tech-
nique described in Section 3.

2. For each one of the regions obtained in the previous
step do the following:

(a) Consider the saturation of the colors in the re-
gion.

(b) Construct a histogram of saturations and seg-
ment it as in step 1.

3. For each one of the regions in the previous step, re-
peat steps 2a and 2b but now considering the intensity
of the colors instead of their saturation.

Observe that from the first step of the method we obtain
a number of colors which is successively increased when
adding saturation and intensity information. As a result of
the algorithm we end up with a minimum set of color re-
gions. A color can be chosen as a representative for each re-
gion by simply computing the mean value of the HSI com-
ponents of the colors in the region. This set of minimum
colors forms the final color palette.

In the next section, the techniques used to segment each
color component histogram are described in detail.

3. HISTOGRAM SEGMENTATION

In 2003, Agnès Desolneux, Lionel Moisan and Jean-Michel
Morel ([5]) defined a new parameter-free method for the
detection of meaningful events in data. An event is called � -
meaningful if its expectation under the a contrario random
uniform assumption is less than ��� Let us state what this
definiton yields in the case of the histogram modes.

3.1. Uniform hypothesis. Meaningful intervals and gaps
of a histogram.

In all the section, we will consider a discrete histogram � ,
that is

�
points distributed on � values ��� ��	�
� ���� . For each

discrete interval  �  ��� of ��� ��	�
�  ��� , ��� �  ��� will represent
the proportion of points in the interval. For each interval

 �  ��� of ��� ��	�
� ���� , we note ��� �  ����������� ��!" the relative
length of the interval. The value �#� �  ��� is also, under the
uniform assumption, the probability for a point to be in
 �  ��� . Thus, the probability that  �  �$� contains at least a
proportion ��� �  ��� of points among the

�
is given by the

binomial tail %&� �  � ��� �  ��� '��� �  ���(� , where %)�+* �, '�-�.�/102(35476 0 298 � 2 ���;:<�-� 0 � 2 . The number of false alarms of  �  �$�
is:

�>=7? �@ �  ���+�A� �B� �>CD�E�F %&� �  � ��� �  ��� G��� �  ���@���
Thus, an interval  �  ��� is said � -meaningful if it contains

“more points” than the expected average, in the sense that�H=7? �@ �  ���+�<IJ� . In the same way, an interval  �  ��� is said
to be an � -meaningful gap if it contains “less points” than
the expected average.

Now, these binomial expressions are not always easy to
compute, especially when

�
is large. In practice, we adopt

the large deviation estimate to define meaningful intervals
and gaps. First, we define the relative entropy of an interval
 �  ��� (with respect to the prior uniform distribution p) by

K �@ �  ���+�L� ��� �  �M��N	O�PRQMS �ET �VUW S �ET �VU CCX����:Y��� �  �M�@��N
OZP !$� Q�S �ET �VU!$� W S �ET �VU �K �( �  �$�[� is the Kullback-Kleiber distance between two Ber-
nouilli distributions of parameters ��� �  �M� and ��� �  ��� ([6]),
that is

K �( �  ���[�A�D\7]^�'��� �  ����_	_ ��� �  ���@���
Definition 1 An interval  �  �$� is said to be an � -meaningful
interval (resp. � -meaningful gap) if ��� �  �M�<`>�#� �  ��� (resp.
��� �  �M�<Ia�#� �  �M� ) and if its relative entropy

K �( �  �$�[� is

K �@ �  ���+�cb �� N
OZP �d� �>CD�E�F �
3.2. Monotone hypothesis

How can we detect meaningful intervals and gaps if we
know that the observed objects follow a non-uniform dis-
tribution (e.g. decreasing or increasing)? We want now
to define the meaningfulness of an interval with respect to
the decreasing hypothesis (the definitions and results for
the increasing hypothesis can be deduced by symmetry).
We will call e.� �c� the space of all decreasing densities on
���  F M�
�	� ��f� and gh� �c� be the space of normalized probabil-
ity distributions on ���  F ��	�
�  ��� .

If �Ri.gh� �c� is the normalized histogram of our observa-
tions, we need to estimate the density �ji>e.� �c� in regards
to which the empirical distribution � has the “less meaning-
ful” gaps and intervals, which is summed up by the opti-
mization problem

k�7� ����l�monV* Wqpsr S " U tXu
vw �ET �'x p�y ! T zMT|{|{|{|T "~}��
�B�+��� �  �M�M_
_ �#� �  ���(� �



The meaningfulness of intervals and gaps can then be de-
fined relatively to this distribution

k� . Note that the uniform
distribution is a particular case of decreasing density, which
means that this formulation strengthens the previous theory:
if there is no meaningful interval or gap in regards to the
uniform hypothesis, there will be no meaningful interval or
gap in regards to the decreasing hypothesis.

However, this optimization problem is not easy to solve.
We choose to slightly simplify it by approximating

k� by the
Grenander estimator �� of � ([7]), which is defined as the
nonparametric maximum likelihood estimator restricted to
decreasing densities on the line.

Definition 2 The histogram �� is the unique histogram which
achieves the minimal Kullback-Leibler distance from � to
e.� �c� , i.e.

� �d�'��_
_ �Z�^� t u
vWqpsr S " U �
�B�+�;_
_ � � �

It has been proven ([8]) that �� can easily be derived
from � by an algorithm called “Pool Adjacent Violators”
that leads to a unique decreasing step function �� .

Now, the definitions of meaningful interval and gaps are
analogous to the ones introduced in the uniform case, the
uniform prior being just replaced by the global decreasing
estimate � of the observed normalized histogram � .

Definition 3 Let � be a normalized histogram. We say that
an interval  �  ��� is � -meaningful for the decreasing hypoth-
esis (resp. an � -meaningful gap for the decreasing hypoth-
esis) if ��� �  ��� ` ��� �  ��� (resp. ��� �  ��� I �;� �  �M� ) andK

Q �@ �  ���+�A�1\7]A�+��� �  ���M_
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We are now able to define precisely what we called “to

be almost decreasing on a segment”.

Definition 4 We say that a histogram follows the decreas-
ing (resp. increasing) hypothesis on an interval if it con-
tains no meaningful gap for the decreasing (resp. increas-
ing) hypothesis on the interval.

3.3. Acceptable Segmentations

The aim of our segmentation is to split the histogram in sep-
arated “modes”. We will call “mode” an interval on which
the histogram follows the increasing hypothesis on a first
part and the decreasing one on the second part.

Definition 5 We say that a histogram � follows the uni-
modal hypothesis on the interval  �  ��� if it exists �Ri  �  ���
such that � follows the increasing hypothesis on  � �� � and �
follows the decreasing hypothesis on  �� ��� .

Such a segmentation exists. Indeed, the segmentation
defined by all the minima of the histogram as separators fol-
lows obviously the unimodal hypothesis on each segment.
But if there are small fluctuations it is clear that it is not a
reasonable segmentation (see the left part of Figure 1). For-
tunately, a segmentation following the unimodal hypothe-
sis on each segment is generally not unique. We present
a procedure that finds a segmentation much more reason-
able than the segmentation defined by all the minima. We
want to build a minimal (in terms of numbers of separators)
segmentation, which leads us to introduce the notion of “ac-
ceptable segmentation”.

Definition 6 Let � be a histogram on ��� ��	�
� ���� . We will
say that a segmentation � of � is acceptable if it verifies the
following properties:

� � follows the unimodal hypothesis on each interval
 ����	��� �#! � .

� there is no interval  � � 
� 2 � with
� b n;C � , on which �

follows the unimodal hypothesis.

It is clear in the discrete case that such a segmentation
exists: we can start with the limit segmentation containing
all the minima of � and gather the consecutive intervals to-
gether until both properties are verified. It is the principle
used in the next algorithm:

Fine to Coarse (FTC) Segmentation Algorithm:

1. Define the finest segmentation (i.e. the list of all the
minima) �j� �� ! ,... , � 0 � of the histogram.

2. Repeat:

Choose n randomly in  F ����E* l��������A�q:X�M� . If the modes
on both sides of ��� can be gathered in a single interval
 ��� ��! 	��� �#! � following the unimodal hypothesis, group
them. Update � .

Stop when no more unions of successive intervals fol-
lows the unimodal hypothesis.

3. Repeat step 2 with the unions of
�

intervals,
�

going
from � to ���E* l��������A� .

A result of this algorithm is shown on Figure 1. The left
part of the figure shows the initialization of the algorithm
(all the minima), and the final result is on the right.

4. RESULTS

We display three examples of color palettes obtained with
the proposed method. For each one of the examples we
display 3 images. The first one is the original image; the
second one is the image obtained by replacing the original
colors with the colors in the palette; and the third one shows



Fig. 1. Left: all the minima of the histogram. Right: remaining minima
after the fine to coarse algorithm.

the hierarchical palette constructed with the algorithm de-
scribed in Section 2. Each row in this image displays the
colors obtained at each step of the algorithm. Remark that
the number of colors increases when saturation and inten-
sity information is added to the results obtained for the hue
component.

5. CONCLUSIONS

We present an automatic and adapted method for the auto-
matic construction of a color palette for any given image.
The palette represents the main colors in the image and it
is constructed using a hierarchical algorithm that attaches
more importance to the hue and saturation components than
to the intensity component in the HSI color representation.

Other options, such as split and merge techniques, are
being currently studied in order to improve the obtained
color palette.
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Fig. 2. Top left: Original image “ladybug”. Top right: Resulting image
with 11 colors after hue, saturation and intensity steps. Bottom: Color
palette. The hue values for this image are represented in the histogram of
Figure 1. Since the histogram is divided in three regions, the first row in the
color palette contains just three colors (corresponding to leaf, background
and ladybug, respectively). As information on saturation and intensity is
added, the number of colors increases.
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