
1

A non parametric approach for histogram
segmentation

Julie DELON

CMLA, ENS de Cachan. E-mail: delon@cmla.ens-cachan.fr
Agnès DESOLNEUX

MAP5 - UFR Maths-Info Université Paris 5. E-mail: desolneux@math-info.univ-paris5.fr
José-Luis LISANI

Univ. Illes Balears, Spain. E-mail: joseluis.lisani@uib.es
Ana-Belén PETRO*

Univ. Illes Balears, Spain. E-mail: anabelen.petro@uib.es

Abstract— We propose a method to segment a 1D-histogram
without a priori assumptions about the underlying density
function. Our approach considers a rigorous definition of an
admissible segmentation, avoiding over and under-segmentation
problems. A fast algorithm leading to such a segmentation is
proposed. The approach is tested both with synthetic and real
data and an application to the segmentation of written documents
is presented. We shall see that this application requires the
detection of very small histogram modes, which can be accurately
detected with our method.

Index Terms— SEG-STAT, OTH-DOCU

I. I NTRODUCTION

Histograms have been extensively used in image analysis,
and more generally in data analysis, mainly for two reasons:
they provide a compact representation of large amounts of
data and it is often possible to infer global properties of the
data from the behavior of their histogram. One of the features
that better describes a 1D-histogram is the list of itsmodes,
i.e. the intervals of values around which data concentrate. For
example the histogram of hues or intensities of an image
made of different regions shall exhibit different peaks, each
one of them ideally corresponding to a different region in the
image. In this case, a proper segmentation of the image can be
obtained by computing the appropriate thresholds that separate
the modes in the histogram. However, it is not always easy to
quantify the amount of “data concentration” in an interval, and
hence to separate modes.

Among the algorithms proposed for 1D histogram seg-
mentation, we can distinguish between parametric and non-
parametric approaches. The first ones (see [13]) assume the
set of data as samples of mixtures ofk random variables of
given distributions, as in the Gaussian Mixture Models. Ifk is
known, optimization algorithms such as the EM algorithm [11]
can estimate efficiently the parameters of these distributions.
The estimated density can then be easily segmented to classify
the original data. The main drawback of this approach is that
histograms obtained from real data cannot always be modeled
as mixtures of Gaussians, for example, luminance histograms
of natural images, as we shall see in the experimental section.
Non-parametric approaches give up any assumption on the

underlying data density. Among them, bi–level or multi–level
thresholding methods, such as [1], [7], [18], [22], divide the
histogram into several segments by minimizing some energy
criterion (variance, entropy,etc...).

In all cases, the number of modes in the final segmentation
must be estimated. This number can be specifieda priori
and becomes a method parameter. It can also be estimated if
its a priori distribution is hypothesized. The selection of this
parameter is crucial since a wrong choice leads to an over or
under segmentation of the data. Generally,ad hocprocedures
are used to estimate the actual number of modes.

Other non-parametric approaches (for instance, mean shift
[9]) find peaks (local maxima) of the histogram without
estimating the underlying density. These methods tend to
detect too many peaks in histograms coming from real noisy
data. Some criterion is therefore needed to decide which of
these peaks correspond to true modes ([25]). Indeed, one of
the main challenges of histogram analysis is the detection of
small modes among big ones (see, for example, Fig. 3).

An different approach has been recently proposed in [14].
The authors propose to fit the simplest density function com-
patible with the data. Such a method is globally convincing
but the choice of the data-compatibility threshold is not
formalized, only justified by experiments.

The limitations observed in the previous methods have
motivated the development of a new non-parametric approach,
robust to small variations in the histogram due to the limited
number of samples, and local enough to detect isolated small
modes.

In the following section the theoretical framework of the
proposed approach is described in detail. Several tests are
displayed in Section III, with applications to document seg-
mentation.

II. A NEW APPROACH TO HISTOGRAM ANALYSIS

A density function f is said to beunimodal on some
interval [a, b] if f is increasing on some[a, c] and decreasing
on [c, b]. It seems appropriate to segment a histogram by
looking for segments on which it is “likely” that the histogram
is the realization of a unimodal law. On such intervals we
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will say that the histogram is “statistically unimodal” (this
expression will be precisely defined later). Obviously, such
a segmentation is generally not unique. In particular the seg-
mentation defined by all the local minima of the histogram has
this property. However, small variations due to the sampling
procedure should clearly not be detected as modes. In order to
get a “minimal” division of the histogram, these fluctuations
should be neglected. We arrive at two requirements for an
admissible segmentation:

• in each segment, the histogram is “statistically unimodal”,
• there is no union of several consecutive segments on

which the histogram is “statistically unimodal”.

What are the right tests to decide whether a histogram
is “statistically unimodal” on an interval or not? In a non
parametric setting, any unimodal density on the considered
interval should be hypothesized and the compatibility between
this density and the observed histogram distribution should be
tested. Unfortunately, this leads to a huge number of tests
and this is therefore impossible. There is, however, a way to
address this question by testing a small number of adequate
unimodal laws. In [16], this problem was solved for the case
of decreasing laws. Our purpose here is to extend this method
to the segmentation of any histogram into meaningful modes.
We shall treat the problem in three stages in the next three
sections:

• Step A: testing a histogram against a fixed hypothesized
density,

• Step B: testing a histogram against a qualitative assump-
tion (decreasing, increasing),

• Step C: segmenting a histogram and generating an esti-
mate of its underlying density.

A. Distribution hypothesis testing

Consider a discrete histogramh = (hi)i=1...L, with N
samples onL bins {1, . . . L}. The numberhi is the value
of h in the bin i. It follows that

L∑
i=1

hi = N. (1)

For each discrete interval[a, b] of {1, . . . L}, let r(a, b) be the
proportion of points in[a, b],

r(a, b) =
1
N

(
b∑
i=a

hi

)
. (2)

Assume that an underlying discrete probability lawp =
(pi)i=1...L is hypothesized forh. One would like to test the
adequacy of the histogramh to this given density. For each
interval [a, b] of {1, . . . L}, let p(a, b) be the probability for a
point to fall into the interval[a, b],

p(a, b) =
b∑
i=a

pi. (3)

Consider the hypothesisH0 that h originates fromp. In
other words, theN samples of the histogramh have been
sampled independently on{1, . . . L} with law p. A simple

way to accept or to rejectH0 is to test for each interval
[a, b] the similarity betweenr(a, b) and p(a, b). Under the
hypothesisH0, the probability that[a, b] contains at least
Nr(a, b) samples amongN is given by the binomial tail
B(N,Nr(a, b), p(a, b)), where

B(n, k, p) =
n∑
j=k

(
n

j

)
pj(1− p)n−j . (4)

In the same way, the probability that[a, b] contains less than
Nr(a, b) samples isB(N,N(1− r(a, b)), 1− p(a, b)). If one
of these probabilities is too small, the hypothesisH0 can be
rejected. Define for each interval[a, b] its number of false
alarms,

NFAp([a, b]) =


L(L+1)

2 B(N,Nr(a, b), p(a, b))
if r(a, b) ≥ p(a, b),

L(L+1)
2 B(N,N(1− r(a, b)), 1− p(a, b))

if r(a, b) < p(a, b).
(5)

Definition 1 An interval [a, b] is said to be anε-meaningful
rejection of H0 if

NFAp([a, b]) ≤
ε

2
. (6)

Proposition 1 Under the hypothesisH0, the expectation of
the number ofε-meaningful rejections among all the intervals
of {1, . . . L} is smaller thanε.

The proof of proposition 1 is obvious [12] and uses a Bonfer-
roni argument, taking into account the number of testsL(L+1)

2
(the number of different intervals in{1, . . . L}). This means
that testing a histogramh following a law p will lead on the
average to less thanε wrong rejections. It may be asked how
reliable this estimate is. In [17], Grompone and Jakubowicz
have shown that the expectation ofε-meaningful events could
be approximated byε/100. This will be confirmed in section III
(see table I). Thus in practice we fixε = 1, and just talk about
meaningful rejections.

Definition 2 We say that a histogramh follows the law p on
[1, L] if h contains no meaningful rejection forH0.

(a) (b)

Fig. 1. Histograms ofN = 10000 samples distributed onL = 100 bins,
tested against the unifom law on[1, 100]. (a) Realization of the uniform law
on [1, 100]. (b) Realization of a mixture of two uniform laws:[1, 50] with a
weight0.45, and [51, 100] with weight0.55.
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Figure 1 shows two histograms which have been tested
against the uniform law on[1, 100]. The first one is a real-
ization of this law, and no rejection is found. The second is a
mixture of two uniform laws on different intervals. In this case,
several rejections of the uniform law on[1, 100] are found.
The rejection with the lowest NFAp (the interval[50, 100]) is
shown in Figure 1(b).

B. Testing the monotone hypothesis

Next we test if a histogramh follows a decreasing hypothe-
sis on[1, L] (the increasing case can be deduced by symmetry).
This test will be useful later to give a suitable meaning to
the expression “being statistically unimodal on an interval”.
The aim of a ideal test is to examine the adaptation ofh to
any decreasing density on[1, L]. This operation is obviously
impossible but can be circumvented by using an estimate of
the most likely decreasing law that fitsh.

Let P(L) be the space of discrete probability distributions
on {1, . . . L}, i.e., the vectorsr = (ri)i=1,...L such that

∀i ∈ {1, 2, ..., L}, ri ≥ 0 and
L∑
i=1

ri = 1. (7)

Let D(L) ⊂ P(L) be the space of all decreasing densities on
{1, . . . L}. If r = 1

N h ∈ P(L) is the normalized histogram
of our observations, let̄r be the Grenander estimator ofr.
Introduced by Grenander in 1956 ([16]), this estimator is
defined as the non-parametric maximum likelihood estimator
restricted to decreasing densities on the line.

Definition 3 The histogram̄r is the unique histogram which
achieves the minimal Kullback-Leibler distance fromr to
D(L), i.e.

KL(r||r) = min
p∈D(L)

KL(r||p), (8)

where∀p ∈ D(L), KL(r||p) =
∑L
i=1 ri log ri

pi
.

Grenander shows in [16] (see also [3]) thatr̄ is merely
“the slope of the smallest concave majorant function of
the empirical repartition function ofr”. r̄ also achieves the
minimal L2-distance fromr to D(L). It can easily be derived
from r by an algorithm called “Pool Adjacent Violators” (see
[2], [4]).

Pool Adjacent Violators

Consider the operatorD : P(L) → P(L) defined by: for
r = (ri)i=1,...L ∈ P(L), and for each interval[i, j] on which
r is increasing,i.e. ri ≤ ri+1 ≤ ... ≤ rj and ri−1 > ri and
rj+1 < rj , set

D(r)k =
ri + ...+ rj
j − i+ 1

for k ∈ [i, j], (9)

and D(r)k = rk otherwise.

This operatorD replaces each increasing part ofr by a
constant value (equal to the mean value on the interval). A
finite number (less than the sizeL of r) of iterations ofD
yields a decreasing distribution denotedr:

r = DL(r). (10)

An example of discrete histogram and its Grenander estimator
are shown in Fig. 2.

(a) (b)

Fig. 2. (a) Original histogram, (b) Grenander estimator obtained from the
“Pool Adjacent Violators” algorithm.

The previous definitions of meaningful rejections can obvi-
ously be applied to this case by takingp = r̄ in the hypothesis
H0, with r̄ the Grenander estimator ofr = 1

N h.

Definition 4 Let h be a histogram ofN samples andr the
Grenander estimator ofr = 1

N h. An interval [a, b] is said to
be ameaningful rejection for the decreasing hypothesisif

NFAr̄([a, b]) ≤
1
2
, (11)

where NFAp([a, b]) is defined for any density lawp in (5).

Definition 5 We say that a histogramh follows the de-
creasing hypothesis(resp. the increasing hypothesis) on an
interval [a, b] if the restriction of the histogram to[a, b] (i.e.
h|[a,b] = (ha, ha+1, . . . hb)) contains no meaningful rejection
for the decreasing (resp. increasing) hypothesis.

C. Piecewise unimodal segmentation of a histogram

Definition 6 We say that a histogramh follows the unimodal
hypothesison the interval[a, b] if there existsc ∈ [a, b] such
thath follows the increasing hypothesis on[a, c] andh follows
the decreasing hypothesis on[c, b].

We call segmentation ofh a sequence1 = s0 < s1 <
· · · < sn = L. The numbern is termed length of the
segmentation. Our aim is to find an “optimal” segmentation
S of h, such thath follows the unimodal hypothesis on each
interval [si, si+1] of S. If S is the segmentation defined by
all the local minima ofh, h follows obviously the unimodal
hypothesis on each of its segments. But this segmentation is
not reasonable in general (see Fig. 3 (a)). A segmentation fol-
lowing the unimodal hypothesis on each segment is generally
not unique. In order to be sure to build a minimal (in terms of
number of separators) segmentation, we introduce the notion
of “admissible segmentation”.

Definition 7 Let h be a histogram on{1, . . . L}. A segmenta-
tion S of h is admissibleif it satisfies the following properties:

• h follows the unimodal hypothesis on each interval
[si, si+1],

• there is no interval[si, sj ] with j > i + 1, on whichh
follows the unimodal hypothesis.



4

The first requirement avoids under-segmentations, and the
second one avoids over-segmentations. It is clear that such a
segmentation exists. Starting from the segmentation defined by
all the local minima ofh, merge recursively the consecutive
intervals until both properties are satisfied.

Fine to Coarse (FTC) Segmentation Algorithm:
1) Define the finest segmentation (i.e. the list of all the local

minima, plus the endpoints 1 andL) S ={s0,... , sn} of
the histogram.

2) Repeat:
Choosei randomly in[1, length(S)−1]. If the segments
on both sides ofsi can be merged into a single interval
[si−1, si+1] following the unimodal hypothesis, group
them. UpdateS.
Stop when no more pair of successive intervals follows
the unimodal hypothesis.

3) Repeat step 2 with the unions ofj segments,j going
from 3 to length(S).

It must be remarked that step 3 is necessary since it can
happen that the union ofj segments follows the unimodal
hypothesis whilek < j successive intervals contained in this
union do not. For this reason all the possible combinations of
successive intervals must be tested.

The result of this algorithm on a histogram is shown on
Fig. 3.

(a)

(b)

Fig. 3. (a) Initialization of the algorithm (all the local minima of the
histogram). The histogram presents small oscillations, which create several
local minima. (b) Final segmentation after FTC algorithm. Three modes are
detected in this histogram, one is very small.

In the histogram of Fig. 3, an energy–minimizing algorithm
(for example the one presented in [1]) gives similar results
if is specified that3 segments are required. The separator
between the second and third modes is not located exactly
at the same place, but this variation has a negligible effect
on the classification, since very few points are represented in

this zone of the histogram. If only2 segments are required, the
second and third modes are united. It is interesting to note that
for the energy defined in [1], the bimodal segmentation has
almost the same energy as the three-modal segmentation. This
implies that with a term penalizing the number of segments
in the energy, the bimodal segmentation would certainly be
chosen instead of the three-modal one. Therefore, the small
mode cannot be found by this kind of method.

Figure 6 shows the result of the FTC algorithm on a
more oscillating histogram. Popular techniques of histogram
analysis such as mean shift [9] would over-segment this
histogram, as noticed in [25], since many of the observed small
oscillations would be detected as peaks.

III. E XPERIMENTS

The experimental section is organized as follows: First,
some experiments on synthetic data are performed to test the
ability of the method to segment mixtures of laws withouta
priori assumption. Then, some experiments on image segmen-
tation are displayed, and the validity of modeling real data
histograms by Gaussian mixtures is discussed. The section
ends with experiments on document segmentation, and the
robustness of the method is tested.

A. Some results on synthetic data

>From a given probability law, 100 distributions, repre-
sented byN = 2000 samples each, were generated and
quantized on 50 bins. For each distribution the number of
segments found by the FTC algorithm was noted. Table I
shows for different classical laws the number of distributions
among the 100 leading to 1, 2 or 3 segments. The laws
used here are the uniform law, a gaussian distribution of
standard deviation 10 and mixtures of two gaussian functions
1
2N (µ, σ)+ 1

2N (µ+d, σ), with σ = 5 andd = 2σ, 3σ or 4σ.
For a uniform or a Gaussian law the number of segments

is almost always found to be 1. For Gaussian mixtures, the
results are of course closely related to the distanced between
the means of the Gaussian distributions. Whend = 2σ, the
FTC algorithm always finds a single segment. It begins to
find two segments whend ' 2.5σ, and finds two segments
in 99% of the cases as soon asd ≥ 3.4σ. Figure 4 shows
that these results correspond to intuition. Whend = 2σ, the
two Gaussian functions cannot be distinguished, whereas the
mixture clearly shows two modes whend ≥ 3σ. These results
also obviously depend on the numberN of points. The larger
N is, the more each distribution looks like the real mixture law,
and the sooner the algorithm finds two segments. Of course,
segmenting Gaussian mixtures can be made more efficiently

TABLE I

NUMBER OF SEGMENTS FOUND BY THEFTC ALGORITHM FOR 100

SAMPLES OF SIZE2000OF DIFFERENT LAWS.

unif. gauss. mix. of 2 Gaussian laws
d = 2σ d = 3σ d = 4σ

1 segment 99 100 100 24 0
2 seg. 1 0 0 76 100
3 seg. 0 0 0 0 0
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(a) (b)

(c)

Fig. 4. Examples of Gaussian mixtures of the form1
2
N (µ, σ) + 1

2
N (µ+

d, σ), whereσ = 5. (a) Cased = 2σ, (b) d = 3σ, and (c)d = 4σ. For
d = 2σ, the FTC algorithm finds no separator. For the other mixtures, the
vertical line indicates the segmentation found.

by dedicated algorithms if we really know they are Gaussian.
In practice, observed mixtures are seldom Gaussian mixtures.

B. Some experiments on image segmentation

Figure 5 displays an image that contains a uniform back-
ground and a set of small objects of different intensities. The
intensity histogram shows a large peak corresponding to the
background and very small groups of values corresponding to
the objects in the foreground. The FTC algorithm segments the
histogram into four modes. The associated regions are shown
in Fig. 5, each one of them corresponding to a different object
in the scene.

Modes of a gray level histogram do not necessarily corre-
spond to semantical visual objects. In general modes simply
correspond to regions with uniform intensity and segmenting
the histogram boils down to quantizing the image on the
so-defined levels. This is the case in Fig. 6. The histogram
of ’Lena’ is automatically divided into 7 modes, and the
corresponding image quantization is shown in Fig. 6 (c).
Remark that no information about the spatial relations between
image pixels is used to obtain the segmentation. Some authors
(e.g. [23], [8]) propose the use of such information to improve
the results of histogram thresholding techniques.

As mentioned in the beginning of section II, segmenting a
histogram consists of two steps: 1. choosing a set of possible
densities; 2. looking for the simplest of these densities which
better adapts itself to the histogram for some statistical test.
In the FTC algorithm, the densities proposed are a set of
mixtures of unimodal laws, constructed from local Grenander
estimators of the histogram. The test consists in looking
for meaningful rejections. Another option is to use an EM
algorithm to look for the best mixture ofk Gaussian laws
fitting the histogram. For eachk, the adequacy of the mixture
to the histogram is measured by a Kolmogorov-Smirnov test.
The final segmentation is then defined by all the local minima

(a) (b)

(c)

Fig. 5. (a) original image (399× 374 pixels), (b) its intensity histogram
segmented into 4 modes. (c) Regions of the image corresponding to the 4
obtained histogram modes (in decreasing level of intensity, the background
is either white or black depending on the mean intensity of the represented
mode).

of the selected mixture. This can be tested on the ’Lena’
histogram. The EM algorithm is initialized by a k-means
algorithm. For a significance level of5% the first value of
k leading to an accepted mixture isk = 14 (the p-value for
this mixture is 0.053). The adaptation between this mixture
and the histogram is confirmed by a Cramer von Mises test
at a significance level of5% (p-value = 0.0659). Figure 6 (d)
shows this best mixture of 14 Gaussian laws and indicates
its local minima. Observe that this density is constituted of 7
modes that correspond exactly to the modes found previously.

With more demanding tests (a Chi-square test, or the search
of meaningful rejections presented in section II-A), all mix-
tures are rejected untilk = 20 (the modes found in this case
are still the 7 same modes). This illustrates the discrepancy
between the number of Gaussians needed to correctly represent
the law and the actual number of modes. This discrepancy can
be explained by the following observation: when a digital pic-
ture is taken, the sensors of the camera and the post-processing
that is used to store the picture into a file are non-linear.
Even if the real intensity values of a given object followed
a Gaussian law, the intensity distribution of this object on the
picture would not be well represented by a Gaussian function.
In particular, the corresponding mode on the histogram can
be highly non-symmetric (see e.g. Fig.6). Such a mode needs
several Gaussian laws to be well represented, whereas a unique
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unimodal law fits it. As a consequence, looking for a mixture
of unimodal laws is more adapted in this case than looking
for Gaussian mixtures.

(a) (b)

(c) (d)

Fig. 6. (a) Image (256× 256 pixels) Lena. (b) Its intensity histogram
segmented into 7 modes by the FTC algorithm. Observe that this histogram
presents strong oscillations. In the initialization, the histogram presented 60
local minima among 256 bins. The segments have been merged until they
follow definition 7 of an admissible segmentation. (c) Image Lena quantized
on the 7 levels defined by the histogram segmentation shown in (b). (d) Best
mixture of 14 Gaussian laws for the histogram (b), found by an EM algorithm.
The local minima of this mixture, indicated by the vertical lines, correspond
almost exactly to the separators found in (b).

Figure 7 shows an example of image segmentation using the
hues instead of the gray levels. Remark that hue histograms
are circular. The FTC algorithm is perfectly adapted to this
case.

C. Some experiments in document image analysis

Histogram thresholding is widely used as a pre-processing
step for document understanding and character recognition. Its
main use in this domain is to sort out the background and the
characters in scanned documents. In this kind of documents,
the intensity histogram generally presents two different modes:
one large mode that represents the background, and another
one, much smaller, corresponding to the text. Many different
binarization methods have been proposed (see [21] and [15])
to find the best histogram thresholds for grayscale images.
Nowadays, different methods are still studied, using simple
spatial features ([10]), texture features ([20]) or mathematical
morphology information ([6]).

However, binarization methods present two drawbacks.
First, when the foreground region (the text here) is too small in
comparison to the background (see Fig. 8), the position of the
threshold becomes arbitrary, and the foreground may not be
well detected. Second, binarization methods are not adapted

(a) (b)

(c)

Fig. 7. (a) ’Beans’ image. (b) Hue histogram of the image and corresponding
segmentation in 6 modes (remark that the hue histogram is circular). (c)
Corresponding segmentation of the image.

to any kind of written documents (see Fig. 10). When the
background pattern is complicated, or when different inks are
used in the text, segmenting the histogram in only two modes
is not a good solution. Finding automatically the number of
modes in the histogram allows one to get more than two modes
when necessary.

In simple written documents, where only one ink has been
used, the segmentation found by the FTC algorithm is bimodal.
This is the case of the example shown in Fig. 8. The histogram
is segmented into two modes, one of them corresponding to
the text characters (see Fig. 8(c)). This example shows that the
FTC algorithm is able to find very small modes when they are
isolated enough. In Fig. 9, although the image presents several
different gray shades, the FTC algorithm also segments the
histogram into two modes (Fig. 9(b)), separating clearly the
characters in the check from the background, as we can see in
Fig. 9(c). In these experiments, it must be underlined that the
size of the images can interfere in the results. In a text image,
the larger the proportion of white pixels is, the more difficult it
becomes to extract a black mode from the histogram, since it
tends to become negligible in front of the white one. In these
cases, it is interesting to narrow the image around the text.

In the case of the histogram of the image shown in Fig. 10,
the algorithm finds three different modes, corresponding to
three intensity regions in the image. The first mode represents
the band in the bottom of the image, the second mode
corresponds to the text and the stars of the image, and the
third one is the background. A bi–level histogram thresholding
method could not yield this separation (e.g. [22], [21]).

D. Sensibility of the method

Generally, two factors can influence the segmentation: the
noise in images and the histogram quantization noise.
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(a)

(b)

(c)

Fig. 8. (a) Original image (1010× 661 pixels). (b) Intensity histogram and
the threshold obtained. (c) Pixels corresponding to the left segment of the
histogram.

Theoretically if we add a noiseb to an imageu, its intensity
distribution becomeshu ∗ hb, where hu is the gray level
histogram ofu, and hb the noise histogram. This results in
a blur in the histogram. If the image hasN pixels, and if
the noise is an impulse noise, added top% of the pixels,
thenhu ∗ hb = (1 − p)hu + p N

2561[0,255], which is not really
disturbing for the FTC algorithm (adding a uniform noise on a
histogram does not change its unimodality property on a given
interval). Moreover this kind of noise can be easily removed
by a median filter on the image. In the case of gaussian
noise, the operation smoothes the shape of the histogramhu.
As a consequence, the number of modes found can decrease
when the standard deviation of the noise increases too much.
However, this kind of image noise can be efficiently handled
by NL-means algorithms [5] before computing the histogram.

The performance of the FTC algorithm in the presence
of additive noise can be evaluated as follows ([24], [19]):
(1) create a synthetic image (Figure 11, top) and segment
it manually; (2) add increasing quantities of uniform noise
(Figure 11, middle and bottom); (3) segment the histograms

(a)

(b)

(c)

Fig. 9. (a) Original image (755× 201 pixels), (b) Intensity histogram of
the original image and corresponding segmentation. This histogram presents
several local minima, but the final segmentation is bimodal. (c) Pixels
corresponding to the first segment of the histogram.

(a) (b)

Fig. 10. (a) Original image (246× 156 pixels), (b) Intensity histogram with
the 3 modes obtained. The first mode on the left corresponds to the lower and
darker band of the image, the middle mode corresponds to the text and the
stars, and the last mode is the background one.

using FTC and evaluate the probability of error by applying:

P (error) =
N∑
j=1

N∑
i=1,i 6=j

P (Ri|Rj)P (Rj) (12)

whereN is the number of regions in the manually segmented
image (N = 4 in our example),P (Rj) is the proportion of
pixels in thejth region andP (Ri|Rj) is the proportion of
pixels in thejth region assigned to theith region by the FTC
algorithm.

The results of this evaluation are shown in Table II. Since
the histogram of the original synthetic image was composed
of 4 gaussians, the EM algorithm was also used to estimate
this mixture. Remark that when SNR decreases the gaussian
mixture hypothesis no longer holds and the EM algorithm
gives poor results. The FTC method, however, is able to cope
with this distortion down to lower SNR values.

The real noise in histograms is the quantization noise,
coming from the fact that the histograms have a finite number
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Fig. 11. Performance evaluation of the FTC algorithm in the presence of ad-
ditive noise. Top, reference image (256× 256) and its histogram. Middle and
bottom, images corrupted with uniform noise (SNR=24dB and SNR=17dB,
respectively), and their corresponding histograms. The segmentation results
are marked on the histograms.

N of samples. If a histogramh originates from an underlying
densityp, the largerN is, the moreh looks likep. WhenN →
∞, a segmentation algorithm should segment the histogram at
each local minima of its limitp. Consider the example of
Fig. 12. An image of size 1600x1200 is subsampled several
times by a factor 2. Each intermediate image yields an his-
togram. These histograms can all be considered as realizations
of the density given by the histogram of the original image.
The smaller the number of samples is, the less information
we have, and the less the histogram can be segmented with
certainty. Figure 12 shows that the number of segments found
by the FTC algorithm increases withN . The separators tend
towards the separators of the deterministic histogram of the
continuous underlying image.

IV. CONCLUSION

This papers presents a new approach to segment a histogram
without a priori assumptions about the number or shape of
its modes. The central idea is to test the simplest multi-

TABLE II

PERFORMANCE EVALUATION.

SNR (dB) Inf. 36 30 27 24 22 17
P(error) FTC 0 0 0 0 0 0.08 0.14
P(error) EM 0 0 0 0.08 0.44 0.72 0.71

(a) Original image, 1600x1200 wide

(b) Histogram of the original im-
age (1920000 samples).

(c) Histogram of the image sub-
sampled by a factor 2 (480000
samples).

(d) Histogram of the image sub-
sampled by a factor 4 (120000
samples).

(e) Histogram of the image sub-
sampled by a factor 8 (30000 sam-
ples).

Fig. 12. Sensibility of the method to quantization. The larger the number of
samples is, the more certain the segmentation is. It follows that the histogram
is more and more segmented whenN increases. The segmentation tends
towards the segmentation of the deterministic histogram of the continuous
underlying image.

modal law fitting the data. The proposed adequacy test, called
“meaningful rejections”, is a multiple test which presents
the advantage of being simultaneously local and global. This
method is more generic than looking for Gaussian mixtures
and avoids overestimating the number of modes. The corre-
sponding algorithm is able to detect very small modes when
they are isolated, which makes it well adapted to document
analysis. The statistical aspect of the approach makes it robust
to quantization noise: the larger the number of samples is,
the more the histogram can be considered as deterministic,
and the more it is segmented. Several tests on histograms
computed from real or synthetic data endorse the efficiency
of the method. Now, it is clear that such a method should
be extended to higher dimension in order to segment color
histograms. First results have been obtained by segmenting
hierarchically color histograms in the HSV space. A direct
adaptation of the method to any dimension is currently studied.
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