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Abstract. We present a method for the automatic estimation of the mini-
mum set of colors needed to describe an image. We call this minimal set “color
palette”. The proposed method combines the well-known K-Means clustering
technique with a thorough analysis of the color information of the image. The
initial set of cluster seeds used in K-Means is automatically inferred from this
analysis. Color information is analyzed by studying the 1D histograms asso-
ciated to the hue, saturation and intensity components of the image colors.
In order to achieve a proper parsing of these 1D histograms a new histogram
segmentation technique is proposed. The experimental results seem to endorse
the capacity of the method to obtain the most significant colors in the image,
even if they belong to small details in the scene. The obtained palette can be
combined with a dictionary of color names in order to provide a qualitative
image description.

1. Introduction

The human visual system is a complex and precise entity that is able both to
distinguish millions of colors and to describe an image by naming just a few of
them [24]. This last characteristic derives from its ability to group colors with
similar tonality and to assign a unique name to each group. Humans perform this
process effortlessly but, computationally, it is not an easy task. We aim at the
automation of such a process.

The example in Figure 1 illustrates the main difficulties of the problem of repre-
senting a color image with a minimum set of colors. In this figure, the same original
image is represented with two different sets of colors. Both sets consist of 12 col-
ors, but why 12 and not 10, 20 or any other value? How many colors are needed
for an acceptable representation? Moreover, even if this number can somehow be
estimated, the question of finding the best set of colors remains open, as it can be
observed in the example. In both cases the number of colors is the same, however
the second set represents more accurately the original image. In particular, the
color of the small ladybug in the leaf is correctly represented in the second image,
while it is missing in the first one.

Based on the previous observations, we consider that any acceptable image rep-
resentation must satisfy two basic requirements: reduction of redundant colors, and
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Figure 1. Top, original image (600 × 400 pixels) . Bottom, two
representations of the original image with two different sets of 12
colors each.

preservation of rare colors. The first requirement leads to a minimum set of colors,
while the second one ensures that colors corresponding to small but perceptually
significant objects in the image will be preserved in the final set.

The problem of representing a color image with a minimum set of colors is well
known by the Computer Graphics community and it is usually referred to as color
palette estimation, by an analogy between this set of colors and the palette of a
painter. The image description provided by the color palette has several applica-
tions: selection of the optimum displayable colors in computer graphics, color-based
image indexing and retrieval [37], compression of color information [35], color images
segmentation [40], etc.

However, the most popular techniques used in Computer Graphics for obtaining
the color palette (Median Cut [22], Popularity algorithm [22] and Octree algorithm
[16]) fail to meet the above requirements. First, the user needs to specify the desired
number of colors. Moreover, they can not cope with the problem of representing
small image details, as will be shown in the experimental section.

More general clustering techniques, such as K-Means and Mean Shift [43], still
present the drawback that one needs to estimate the right number of clusters. An
additional problem relates to the fact that the obtained results depend on the
initial set of cluster seeds. Although some general methods have been proposed
to overcome these drawbacks (see Section 2), none of these techniques takes into
account the special characteristics of the color clustering problem.

We propose in this paper to combine the K-Means clustering technique with
a thorough analysis of the color information of the image in order to obtain an
automatic and very accurate representation of any color image. The proposed
method decomposes color information into hue, saturation and illumination, which
are magnitudes that can be interpreted intuitively and have a physical meaning [44].
Groups of colors are obtained by applying the following hierarchical algorithm:
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initially, colors are discriminated by their hue; next, colors with similar hue are
discriminated by their saturation; finally, colors with similar hue and saturation are
discriminated by their intensity. At each step of the algorithm the discrimination
between different values of a given magnitude (hue, saturation or illumination) is
performed by analyzing the associated 1D histograms.

As a result of this analysis a small set of color groups is obtained and a represen-
tative for each group is chosen. This set of color representatives is used as an initial
seed for the K-Means algorithm in order to obtain the final palette. Optionally, the
information of the color palette can be combined with a dictionary of color names,
thus obtaining a qualitative description of the image.

The paper is organized as follows. In the next section we give an account of
the main techniques found in the literature for color clustering, highlighting their
advantages and shortcomings. It must be remarked that the review only includes
those techniques that do not make use of spatial relations between image pixels.
Only methods using global color information are reported. Therefore no references
to segmentation methods have been included. Section 3 describes a new technique
for analyzing 1D histograms, which is at the core of the method for the automatic
estimation of the initial set of significant image colors. This method, the so-called
ACoPA algorithm, is described in detail in Section 4. The use of ACoPa as the
initialization step of the K-Means algorithm leads to an automatic method for
obtaining the color palette. Section 5 explores the combination of this palette
with a dictionary of color names in order to obtain a qualitative description of the
images. Section 6 displays some results of the proposed algorithm. Some examples
illustrating the shortcomings of classical color clustering techniques are also shown,
together with the improvements provided by the combination of the ACoPa and
the K-Means algorithms. Also some experiments on the use of dictionaries of color
names are shown. Finally, some conclusions and final remarks are outlined in the
last section of the paper.

To improve the readability of the paper two short appendices have been added,
describing the K-Means clustering algorithm and a 1D histogram transformation
algorithm (called “Pool Adjacent Violators”) needed in Section 3.

2. A review of color clustering methods

The problem of color image representation, using a color palette construction,
can be considered as an unsupervised classification of the three-dimensional color
space. Several techniques have been proposed to solve this problem. First, there is
the class of splitting algorithms that divide the color space into disjoint regions, by
consecutively splitting up the color space. From each region, a color is chosen to
represent it in the palette. These algorithms are used for the Computer Graphics
color palette construction where speed is a required characteristic. Among the most
classical approaches we can cite the Popularity algorithm [22], the Octree algorithm
[16] or the Median-Cut algorithm [22]. The most popular is the Median Cut since it
is faster than the Octree algorithm and produces better results than the Popularity
algorithm. This algorithm repeatedly subdivides the color space into smaller and
smaller rectangular boxes, until there are as many boxes as requested colors in the
final palette. All these methods partition the color space into a number of clusters
defined by the user.

Another class of color palette construction techniques considers the problem as
a clustering approach and performs clustering of the color space. The clustering
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techniques [25] can be divided in hierarchical and partitional clustering. Hierarchical
clustering aims at obtaining a hierarchy of clusters, called dendogram, that shows
how the clusters are related to each other. Most hierarchical clustering algorithms
are variants of the single-link [39], complete-link [28] and minimum-variance [32,
42]. A partition of the data items can be obtained by cutting the dendogram at
a desired level, but the partitional clustering algorithms are more useful for this
purpose. A partitional clustering algorithm obtains a single partition of the data
instead of a hierarchical structure. Hierarchical algorithms are more versatile than
partitional ones but the time and memory requirements of the partitional algorithms
are typically lower than those of the hierarchical algorithms. Partitional methods
have advantages in applications involving large data sets for which the construction
of a dendogram is computationally prohibitive. Many of these methods are based on
the iterative optimization of a criterion function reflecting the “agreement” between
the data and the partition. The criteria can be divided in three categories:

• Methods using the squared error attempt to minimize a cost function that is
the sum over all the data items of the squared distance between the item and
the prototype of the cluster it is assigned to. The K-Means [43] is the simplest
and the most commonly used algorithm employing this criterion.

• Density-based methods consider that clusters are dense sets of data items sep-
arated by less dense regions. Dense regions correspond to the modes of the
data items. Once the location of a mode is determined, the cluster associated
with it is delineated based on the local structure of the data items. Some
algorithms of this category are the mean-shift [9] and the GDB-SCAN [36].

• Mixture-resolving methods assume that the patterns to be clustered are drawn
from one of several distributions, and the goal is to identify their parameters.
Most of the work in this area has assumed that the individual components
of the mixture density are Gaussian. The introduction of the expectation
maximization (EM) algorithm in [11] was an important step in solving the
parameter estimation problem.

Most of these methods present two important drawbacks:

• they assume that the number of clusters K in the database is known before-
hand which, obviously, is not necessarily true in real-world applications,

• as iterative techniques, these algorithms are especially sensitive to initial con-
ditions (initial clusters and instance order).

Clustering methods have been compared and studied in different works [25, 13,
20]. Although K-Means suffers from the previous drawbacks, it is the most pop-
ular clustering algorithm since it is easy to implement, and its time complexity is
O(n), where n is the number of data items. K-Means presents another important
drawback: its convergence to a global minimum is not insured. Several variants and
improvements of this method have been reported in the literature to avoid these
drawbacks [26, 4]. The problem of determining the number of clusters can be partly
solved by adding a regularization term to the cost function. With such solutions,
instead of the number of clusters one has to control a regularization parameter,
which is often more convenient but it introduces a new parameter in the algorithm.
Another usual but rough approach is to try clustering with several values of K and
select the “best” solution.
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Milligan [31] shows the strong dependence of the K-Means algorithm on initial
clustering. Some works [14, 23, 38, 3] propose new clustering methods as initial-
ization steps for K-Means, resulting in a hybrid clustering method. The problem
is that these initialization methods suffer from the same problems as the K-Means
algorithm and they have to be provided with an initial clustering. Much simpler
and more inexpensive initialization methods have been presented in other works
[15, 30, 26, 6]. Most of them use the randomization as main tool in their ap-
proaches. A more recent work is [1], which is based on finding a set of medians
extracted from a dimension with maximum variance.

Moreover, the above-mentioned works of initialization and clustering do not take
into account the 3D color space particularities. In particular, some authors [33]
have observed that the color clouds of the real world images usually present half-
moon shapes in RGB space. Clustering in 3D color space has to imply the detection
and separation of these structures. Most of the works in the literature using 3D
histograms do not take into account theses characteristics and they divide the space
by means of rigid structures such as hyperrectangles or spheres [7, 43, 9]. Other
works, such as [33] and [34], take into account the statistical properties, such as
shape and distribution of the clusters in the histogram. The main drawback of
these latter methods is that they do not have a sound theoretical background.

In this work, we present a new method for the automatic determination of the
number of color clusters and for obtaining an initial clustering of the data. The
proposed method is based on the statistical analysis of the colors distribution. The
new approach allows us to solve the main drawbacks of the K-Means method and
to obtain an accurate color image representation with a reduced number of colors.
The result of the Automatic Color Palette (ACoPa) algorithm is a set of colors that
can be used as an initialization of the K-Means method.

3. A new statistical histogram segmentation approach

The ACoPa algorithm is based on the hierarchical analysis of the hue, satura-
tion and intensity histograms of the image colors. In this section we describe the
construction of an automatic and non-parametric method for 1D histogram seg-
mentation. Such a method should be fully unsupervised and should provide a set
of relevant modes, representing suitably the data set. The proposed approach is
based on the following observation: on the intervals where they concentrate, data
generally follow a “unimodal” law. In a color image, for example, the hue values of
the pixels of a given object are naturally distributed according to a unimodal law
around the average hue of the object. Following this observation, it seems appropri-
ate to look for segments on which the histogram is “statistically unimodal”. This
term will be defined later, but, intuitively it implies that the distribution of values
in the interval is (aproximately) increasing up to some maximum value and decreas-
ing from there on. Remark that the notion of “unimodality” is more general than
the one of “Gaussian model”: a Gaussian distribution clearly follows the unimodal
hypothesis, but not all the unimodal distributions can be modeled as Gaussians.

Thus, we are led to the question of finding the right tests to decide whether an
interval is unimodal or not. In a non-parametric setting, we can hypothesize any
unimodal density and test whether the observed law is compatible with the hypoth-
esized one. Unfortunately, this leads to a huge number of tests and is therefore
impossible. There is, however, a way to address this question.
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Consider a discrete histogram h = (hi)i=1...L, with N samples on L bins {1, . . . L}.
The number hi is the value of h in the bin i. It follows that

∑L

i=1 hi = N . For
every interval I of {1, ..., L}, we note h|I the restriction of h to I.

We call segmentation of h a sequence 1 = s0 < s1 < · · · < sn = L. The number n

is termed length of the segmentation. Our aim is to find an “optimal” segmentation
S of h, such that h is roughly unimodal on each interval [si, si+1] of S. Obviously,
deciding if a part h|I of a histogram is the realization of an unimodal law can be
deduced easily if we know how to test the assumption that h is the realization of a
monotone law on an interval. This can be done thanks to the Grenander estimator
[19].

On each interval I of {1, ..., L}, we can compute the decreasing Grenander esti-
mator of h|I , which is defined as the non-parametric maximum likelihood estimator
restricted to decreasing densities. Introduced by Grenander in 1956 [19], this esti-
mator can be easily derived from h by an algorithm called “Pool Adjacent Violators”
(see [2, 5]). This algorithm, described in Appendix B, leads to a unique decreasing
step function on I. In a symmetric way, we can compute the best increasing estima-
tor of a histogram on any interval. An example of a histogram and its Grenander
estimator is shown on Figure 2.

Figure 2. The right histogram is the Grenander estimator of the
left histogram on all the interval, computed by the “Pool Adjacent
Violators” algorithm.

Now, let T be a statistical test that permits us to decide if a part of a histogram
is likely to be the realization of a given law (T could be for example a Kolmogorov-
Smirnov, a Chi-2, or even a multiple test).

Definition 1. We say that a histogram h follows the decreasing (resp. increasing)
hypothesis on an interval I, if it is likely for the test T that h|I is a realization of
the law defined by its decreasing (resp. increasing) Grenander estimator.

Of course, this definition depends on the choice of the statistical test T , and on
the significance level of the test. In order to avoid the usual problems linked with
significance levels, we used a multiple statistical test, introduced by Desolneux et al.
[12] and we further developed in the case of histograms in [10]. This multiple test
presents the advantage of having a significance level with a clear physical meaning
and easy to fix. However, other tests could be used here.

From the previous definition, we can easily define what it means to be “statisti-
cally unimodal” on a segment.

Definition 2. We say that a histogram h follows the unimodal hypothesis on the
interval [a, b] if there exists c ∈ (a, b) such that h follows the increasing hypothesis
on [a, c] and h follows the decreasing hypothesis on [c, b].

Inverse Problems and Imaging Volume 1, No. 2 (2007), 265–287



Automatic color palette 271

If s is the segmentation defined by all the minima of h, then h follows obviously
the unimodal hypothesis on each of its segments. But this segmentation is not
reasonable in general (see the left part of Fig. 3). A segmentation following the
unimodal hypothesis on each segment is generally not unique. Then, in order to
build a minimal (in terms of number of separators) segmentation, we introduce the
notion of “admissible segmentation”.

Definition 3. Let h be a histogram on {1, ..., L}. We will say that a segmentation
s of h is admissible if it satisfies the following properties:

• h follows the unimodal hypothesis on each interval [si, si+1],
• there is no interval [si, sj ] with j > i + 1, on which h follows the unimodal

hypothesis.

The first requirement allows us to avoid under-segmentations, and the last one
is imposed in order to avoid over-segmentations. It is clear in the discrete case that
such a segmentation exists: we can start with the limit segmentation containing all
the minima of h and merge recursively the consecutive intervals until both properties
are satisfied. This is the principle used in the following algorithm.

Figure 3. Left: Typical histogram of hue values of a color im-
age. This histogram cannot be represented by a gaussian mixture.
The vertical lines represent the initialization of the FTC algorithm
(all the minima of the histogram). The histogram presents small
oscillations, which create several local minima. Right: final result
of the segmentation using the FTC algorithm. The histogram is
parsed into three modes.

Fine to Coarse (FTC) Segmentation Algorithm:

1. Define the finest segmentation (i.e. the list of all the local minima, plus the
endpoints 1 and L) S ={s0,... , sn} of the histogram.

2. Repeat:
Choose i randomly in [1, length(S) − 1]. If the segments on both sides

of si can be merged into a single interval [si−1, si+1] following the unimodal
hypothesis, group them. Update S.

Stop when no more pair of successive intervals follows the unimodal hypoth-
esis.

3. Repeat step 2 with the unions of j segments, j going from 3 to length(S).
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Remark that the method is completely automatic, in the sense that the user does
not need to specify the number of modes in the final segmentation. This quantity
is automatically determined by the algorithm.

An example of the application of this algorithm to a typical histogram of hue
values is shown in Fig. 3. This kind of histogram cannot usually be modeled as a
mixture of Gaussians so the classical techniques of histogram segmentation do not
give the desired results. The final segmentation of the histogram gives three modes
(shown on the right side of the figure).

A detailed description of the FTC algorithm and its theoretical background can
be found in [10].

4. Color palette construction

In this section we present a method for obtaining a statistically meaningful set
of color groups from any color image. The meaningfulness of a group is assessed
by analyzing, using the FTC algorithm described in the previous section, the 1D
histograms of the hue (H), saturation (S) and intensity (I) components of the image
colors. This analysis is performed hierarchically:

- First, colors are discriminated by their hue: meaningful modes are detected in the
hue histogram of the image and all the color points belonging to the same mode
are grouped together.

- Next, colors with similar hue (those belonging to the same mode in the hue his-
togram) are discriminated by their saturation: the saturation histogram for these
colors is computed and parsed using FTC; colors belonging to the same saturation
mode are then grouped together.

- Finally, the intensity histogram of colors with similar hue and saturation (the
ones belonging to a common mode in hue and saturation) is computed and its
meaningful modes are extracted; colors belonging to the same mode are grouped
together.

As a result of this process a small set of color groups is obtained. Each group
is composed by colors belonging to a common mode in the hue, saturation and
intensity histograms.

This algorithm is described in full detail at the end of this section, but some
remarks need to be made before this description. First, why using HSI instead of
any other color representation (e.g. RGB or CIE Lab)? The reasons are manifold:

- Hue, saturation and intensity are magnitudes that can be interpreted intuitively
and have a physical meaning [44, 18]: the intensity is proportional to the energy
sent back by the observed object, the hue indicates the dominant wave lengths
and the saturation hints about the concentration of wavelengths.

- Red, blue and green histograms are highly correlated, whereas the intensity in-
formation is decoupled from the chrominance information represented as hue and
saturation. Moreover, the hue and saturation components are intimately related
to the way in which human beings perceive colors. For this reason HSI is usually
the space chosen when developing algorithms based on the color sensing properties
of the human visual system.

- Conversion formulas from RGB to HSI are straightforward (see below), while
conversion from RGB to Lab depends on the scene illuminant.

A second point that needs to be clarified is the order of the color components in
the hierarchical algorithm: why first hue, then saturation and finally illumination?

Inverse Problems and Imaging Volume 1, No. 2 (2007), 265–287



Automatic color palette 273

In this respect, we have followed the lines marked by other authors [8, 41] which
consider the hue as the dominant component for color segmentation, due to its
invariance properties with respect to changes in the direction and intensity of the
incident light [17].

Finally, a technical problem related to the use of the HSI color system must be
addressed. The conversion formulas between RGB and HSI are:

I =
R + G + B

3

S =
√

(R − I)2 + (G − I)2 + (B − I)2

H = arccos

(

(G − I) − (B − I)

S ·
√

2

)

.

We can observe that the hue component is not defined for zero-saturated colors.
These colors are located on the line from pure black to pure white in the RGB color
cube (the so-called “grey axis”). In practice, and due to numerical limitations in
the representation of the color components, this problem also arises when dealing
with low saturated colors. Several authors [21, 29, 41] have remarked this prob-
lem and proposed different solutions which basically consist in classifying colors as
“chromatic” or “achromatic” according to their saturation value. Only colors whose
saturation is above a given threshold are considered as “chromatic” and are used
in the computations involving hue values. This threshold is computed in different
ways depending on the author. We follow a similar approach but we use a very
simple argument to estimate this threshold: for a fixed intensity, at a distance S

from the grey axis the maximum allowed number of color points is 2πS, therefore,
if we decide to quantize the hue component with Q different values S must be above
Q

2π
to allow this quantization. This requirement defines a cylinder in the HSI color

space that we call the grey cylinder. All the color points contained in the cylinder
will be considered as achromatic.

The final version of the color grouping algorithm is as follows:

ACoPA (automatic color palette) Algorithm:

1. Apply the FTC algorithm on the hue histogram of the image. Let S be the
obtained segmentation.

2. Link each pixel of the grey cylinder to its corresponding interval Si = [si, si+1],
according to its hue value.

3. For each i, construct the saturation histogram of all the pixels in the image
whose hue belongs to Si. Take into account the pixels of the grey cylinder.
Apply the FTC algorithm on the corresponding saturation histogram. For
each i, let {Si,1, Si,2, . . .} be the obtained segmentation.

4. For each i and each j, compute and segment the intensity histogram of all the
pixels whose hue and saturation belong to Si and Si,j, including those in the
grey cylinder.

Observe that the number of colors obtained from the first step of the method
increases when we add successively the saturation and intensity information. As
a result of the algorithm we end up with a minimum set of color groups. The
representative color of a given cluster can be chosen as the mean of the colors
present in the cluster This set of colors forms the initial seed that will be used by
the K-Means algorithm (see Appendix A) to obtain the final color palette.
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(a)

(b) (c) (d)

(e)

Figure 4. Test 1 (I), example of the ACoPa algorithm: (a) Orig-
inal image “Flower” (481 × 321 pixels). (b) Hue histogram, seg-
mented into 3 modes. (c) Saturation histogram corresponding to
the right-most mode of the hue histogram, segmented into 3 modes.
(d) Intensity histogram corresponding to the central mode of the
histogram in (c), segmented into 3 modes. (e) Hierarchical color
palette: each row displays the colors obtained at each step of the
algorithm.

It is worth noting that the hue histogram is circular, which means that the hue
value 0◦ is identified with the hue value 360◦. Then, the obtained modes of the hue
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Figure 5. Test 1 (II): (Top) From left to right, pixels contribut-
ing to the left-most, central and right-most modes of the hue his-
togram of Fig. 4(b). (Middle) Idem for the saturation histogram of
Fig. 4(c). (Bottom) Idem for the intensity histogram of Fig. 4(d).
Pixels not contributing to the modes are set either to black or
white.

histograms are also circular. For example, in the hue histogram of Fig. 4(b), we can
see one circular mode from 330◦ to 100◦.

5. Naming colors

The ultimate goal of the proposed method is to qualitatively describe an image
by associating a name to each color in the final palette. To achieve this goal, we
seek for a dictionary of color names, with a good representation and distribution of
the millions of existing colors and containing a not excessive but sufficient amount
of them.

In the literature there are lots of color-names dictionaries (see for example [27]).
We have limited our search to the ones published in the world wide web and we
have considered two of them: the X11 rgb and NBS/ISCC Centroids dictionaries.
X11 is the most replicated dictionary among the ones published online and its last
modification took place in 1994. However, this dictionary presents some drawbacks:
it severely under-represents the darkest octant of the RGB color cube and it presents
some name conflicts. The NBS/ISCC Centroids is an improvement of a NBS/ISCC
dictionary, which tries to be the ideal source for surface color names. The advantages
of this last dictionary can be summarized into the following items:

• it has no name conflicts,
• it has colors distributed to equalize perceptual distances between them,

Inverse Problems and Imaging Volume 1, No. 2 (2007), 265–287
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(a)

(b)

Figure 6. Test 2: (a) Original image “Peppers” (508×507 pixels).
(c) Hierarchical color palette (11 colors).

• it is derived from matching physical samples.

The X11 dictionary presents 450 names of colors, and the NBS/ISCC Centroids
presents 250. In both dictionaries each color name has an RGB code associated
(the “color representative” of the name).

Independently of the used dictionary, the process that associates the color in the
palette to its name in the dictionary is always the same. We use the Euclidean
distance and the CIE Lab coordinates for measuring the difference between the
representative color of the dictionary name and the colors in the palette. The
reason for using Lab coordinates is that, in this space, Euclidean distances between
colors are proportional to the perceptual distances between them. Thus, we will
associate a color of the palette to the name of the dictionary whose representative
color is at the minimal Euclidean distance, considering the CIE Lab coordinates of
both colors. The final result is a list of names where the colors of the palette are
represented by the associated name in the dictionary and the representative color
of the name. The colors are ordered by the amount of pixels that contribute to each
cluster. Thus, the first name in the list is the most frequent color in the image and
the last one the less frequent.

The association of palette colors to color names usually leads to a reduction in
the final number of colors needed to describe the image: if different colors in the
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(a) (b)

(c) (d)

Figure 7. Test 3 (I): color palettes obtained using AcoPa + K-
Means in RGB (a) and Lab spaces (b). The upper row displays
the initial seeds and the lower the final colors in the palette (10
colors). The corresponding segmentations are shown in (c) and
(d). Compare them to the original image in Fig. 4(a)

palette are associated to the same name, then the colors are merged into a common
cluster and the name appears only once in the final list.

Some examples of the combination of the ACoPa+K-Means palette with the X11
and the NBS/ISCC Centroids dictionaries are presented in the next section.

6. Experimental results

We begin this section with a complete and detailed example of the ACoPa al-
gorithm. In Fig. 4 we observe the original “Flower” image (Fig. 4(a)) and its hue
histogram (Fig. 4(b)), which is segmented into three modes using the FTC algo-
rithm. The saturation histogram of the colors contributing to each one of these
modes is computed and also segmented. Fig. 4(c) shows the saturation histogram
corresponding to the right-most mode of the hue histogram and its segmentation.
The process is repeated for the intensity histograms of the colors belonging to a
common mode in hue and saturation. Fig. 4(d) shows the intensity histogram cor-
responding to the central mode of the histogram in Fig. 4(c) and its segmentation.
Fig. 5 displays, for each one of the modes in these histograms, the pixels in the
original image whose color contributes to the mode (the rest of pixels are set either
to black or white).

The mean RGB value of the colors contributing to the same mode is chosen as
the color representative of the mode. Fig. 4(e) displays the color representatives
of all the computed modes. The three rows of the image (from top to bottom)
show the colors corresponding to the modes in the hue, saturation and intensity
histograms, respectively. Observe how the number of colors increases as additional
information is used to compute the modes: only hue information is used to compute
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(a) (b)

(c) (d)

Figure 8. Test 3 (II): color palettes obtained using AcoPa + K-
Means in RGB (a) and Lab spaces (b). The upper row displays
the initial seeds and the lower the final colors in the palette (11
colors). The corresponding segmentations are shown in (c) and
(d). Compare them to the original image in Fig. 6(a).

the first row (3 colors); hue and saturation are used in the second row (8 colors);
hue, saturation and intensity are used to compute the third row (10 colors). For
this reason, we call this representation “hierarchical color palette”. The colors in
the last row are the ones that will be used as seeds in the K-Means method (see
Appendix A) to obtain the final palette.

A second example of application of the AcoPa algorithm is displayed in Fig. 6.
In this case only the original image and the hierarchical color palette are shown.

The third example displays the final color palette for the previous images, ob-
tained by combining the result of ACoPa and the K-Means clustering method. As
commented above, the colors in the last row of the hierarchical palettes are used as
initial seeds of the K-Means method. Clustering has been performed in both RGB
and CIE Lab spaces and the results are shown in Fig. 7 and Fig. 8. In both cases,
the initial seeds and the final colors in the palette (the mean RGB colors of the final
clusters) are displayed. The segmentations of the original images are also shown.
These are obtained by replacing their original image colors by the mean RGB color
of the cluster to which they belong. Observe the striking similarity between the
original and segmented images (either when using RGB or Lab spaces), even if the
latter are represented with a fraction of the original set of colors.

The next test compares the segmentations obtained with classical techniques
for computing color palettes (Median Cut, Popularity algorithm, classical K-Means
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and Mean-Shift) with the results obtained with the proposed method (AcoPa +
K-Means). K-Means and Mean-Shift have been tested using both RGB and Lab
color spaces. Two images have been used in the tests and the results are shown in
Fig. 9 and Fig. 11. In both cases the proposed method outperforms the classical
ones, even if their parameters have been adjusted to obtain the same number of
colors. Remind that this number of colors is automatically computed by AcoPa.

In the case of the “Ladybug” image (Fig. 9), only Mean-Shift and the proposed
method are able to correctly detect the color of the ladybug. Mean-Shift, however,
is unable to represent with the same fidelity both the small bug and the background
leafs. The reason why most of the classical methods fail to find the red color is that
it belongs to a very sparse cluster in RGB space (see Fig. 10(a)). This cluster forms
however a small mode in the hue histogram of the image (see Fig. 10(b)) that the
FTC algorithm is able to correctly detect.

Similar remarks can be made on the “Olive tree” image (Fig. 11). Only Mean-
Shift correctly finds the T-shirts colors, however the landscape in the background
is poorly segmented. On the other hand, Median-Cut, Popularity and classical K-
Means miss some of the T-shirt colors, since they belong to small clusters in color
space. By combining ACoPa with K-Means we obtain better results, but note that
only when using the CIE Lab space both the small T-shirts and the landscape in the
background are represented with the same fidelity. In general, it has been observed
that the use of this color space improves the clustering results.

The last two figures show some experiments on combining the obtained palette
with a dictionary of color names. The goal is to obtain a qualitative description of
the image.

Fig. 12 displays the original image “Bicycle”(Fig. 12(a)), the final segmenta-
tion obtained using the ACoPa+K-Means algorithm in Lab space (Fig. 12(b)) and
the hierarchical and final color palettes (Fig. 12(c), (d)). These colors are named
according to the procedure described in Section 5 and the results are shown in
Fig. 12(d) and Fig. 12(e) (X11 and NBS/ISCC Centroids dictionaries respectively).
In these images, the left column corresponds to the palette color, the middle column
is its name and the last column displays the representative color of the name in the
dictionary.

This example illustrates the reduction in the number of colors induced by the
use of a color dictionary. From the initial 17 colors in the palette, just 12 different
names are found in the X11 dictionary (Fig. 12(d)) while 16 names are assigned
when using the NBS/ISCC Centroids (Fig. 12(e)).

The final lists of names obtained using each one of the dictionaries are different
since the names are different, but the associated representative colors are similar.
It can be observed in the last example (Fig. 13) however that the X11 dictionary
severely under-represents the darkest octant of the RGB color cube. In this figure
the lists of color names obtained for the “Flower” image (Fig. 4(a)) are displayed.
As a result of this under-representation the three dark colors in the palette are rep-
resented by only one name (black). On the other hand, when using the NBS/ISCC
Centroids dictionary these colors are represented by three different names (green-
ishblack, oliveblack and brownishblack).

We can also estimate the adequacy of each dictionary to represent the colors by
comparing the representative color in the dictionary with the original color in the
palette. Ideally they should be very similar, however this is not always true (see
e.g. the second color in the list in Fig. 13(a)).
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In general, the reduction in the number of colors is more important when using
the X11 dictionary, but the assigned color representatives are not always correct.
For this reason we can conclude that the NBS/ISCC dictionary is better suited for
our application: it permits a reduction of the colors in the palette while allowing a
qualitative description of an extensive gamut of colors.

7. Conclusions

We have presented in this paper a method to automatically estimate the signifi-
cant colors of an image. This set of colors is inferred from a statistical analysis of
the Hue, Saturation and Intensity histograms of the image colors and has been used
as the initial seed for the classical K-Means clustering method to obtain a minimum
set of colors representing the image (the so-called “color palette”). The performed
tests show the capacity of the method to represent with fidelity any color image
with a small set of colors (usually less than 30). These results seem to endorse
the idea that a statistical analysis of physical variables may be used to assert the
perceptual reality.
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Appendix A. K-Means clustering
algorithm in RGB or CIE Lab space

Given a cloud of points in RGB space (e.g. the RGB values of the pixels of a color
image) and a set of K RGB points or “initial seeds” (R1, G1, B1), · · · , (RK , GK , BK),
do:

1. Compute the Euclidean distance from all the colors in the cloud to each one of
the seeds.

2. Associate each color point to its closest seed. A cluster is defined as the set of
points associated to the same seed. The number of clusters is therefore K.

3. For each cluster, compute the mean RGB value of the colors in the cluster. Use
this value as the new seed of the cluster.

4. If, for all the clusters, the distance between the new and old seeds is small (below
some user-defined threshold, e.g. 1) then STOP. Else return to step 1.

The same algorithm can be applied in CIE Lab space just by replacing the RGB
components by their corresponding Lab values (conversion formulas can be found
in [44]).

Appendix B. Pool Adjacent Violators

We call D(L) the space of all decreasing densities on {1, 2, ..., L} and P(L) the
space of probability distributions on {1, 2, ..., L}, i.e. the vectors r = (r1, ..., rL)
such that:

∀i ∈ {1, 2, ..., L}, ri ≥ 0 and

L
∑

i=1

ri = 1.
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The algorithm “Pool Adjacent Violators” (see [2, 5]) performs a simple operation:
if r is increasing on successive bins, r is replaced on these bins by its local mean
value and the procedure is repeated.

Pool Adjacent Violators

Let r = (r1, ..., rL) ∈ P(L) be a normalized histogram. We consider the operator
D : P(L) → P(L) defined by: for r ∈ P(L), and for each interval [i, j] on which r

is increasing, i.e. ri ≤ ri+1 ≤ ... ≤ rj and ri−1 > ri and rj+1 < rj, we set

D(r)k =

{ ri+...+rj

j−i+1 for k ∈ [i, j]

rk otherwise.

This operator D replaces each increasing part of r by a constant value (equal to the
mean value on the interval).

After a finite number M of iterations of D, M < L, we obtain a decreasing
distribution denoted by r:

r = DL(r).

This distribution r is exactly the decreasing Grenander estimator of r.
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(a)

(b) (c)

(d) (e)

(f) (g)

(h) (i)

Figure 9. Test 4 (I): comparison of the segmentations resulting
from different clustering methods. The parameters of the methods
have been adjusted to obtain 12 colors. This value has been auto-
matically estimated using ACoPa. (a) Original image “Ladybug”
(600 × 400 pixels). (b) Median Cut. (c) Popularity. (d) Mean-
Shift in RGB space (random seeds). (e) Mean-Shift in Lab space
(random seeds). (f) K-Means in RGB space (random seeds). (g)
K-Means in Lab space (random seeds). (h) ACoPa + K-Means in
RGB space. (i) ACoPa + K-Means in Lab space.
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(a)

(b)

Figure 10. Test 4 (II): (a) RGB space representation of the pix-
els corresponding to the “Ladybug” image (Fig. 9(a)). (b) Hue
histogram of the same image. The red color corresponding to the
ladybug represents a little mode in the hue histogram and a sparse
cluster in RGB space.
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(a)

(b) (c)

(d) (e)

(f) (g)

(h) (i)

Figure 11. Test 4 (III): comparison of segmentations obtained
with different clustering methods. The parameters of the methods
have been adjusted to obtain 17 colors (value automatically esti-
mated with ACoPa). (a) Original image “Olive tree” (779 × 584).
(b) Median Cut. (c) Popularity. (d) Mean-Shift (RGB space, ran-
dom seeds). (e) Mean-Shift (Lab space, random seeds). (f) K-
Means (RGB, random seeds). (g) K-Means (Lab, random seeds).
(h) ACoPa + K-Means (RGB). (i) ACoPa + K-Means (Lab).
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(a) (b)

(c) (d)

(d) (e)

Figure 12. Test 5 (I): naming colors. Comparison of the X11
and NBS/ISCC dictionaries. (a) Original image “Bicycle” (800 ×
600 pixels). (b) Segmentation using ACoPa+ K-Means (Lab). (c)
Hierarchical color palette. (d) Final palette (17 colors). (d) List
of names using the X11 dictionary (12 names). (e) List of names
using the NBS/ISCC dictionary (16 names).

Inverse Problems and Imaging Volume 1, No. 2 (2007), 265–287



Automatic color palette 287

(a) (b)

Figure 13. Test 5 (II): naming colors. Comparison of the X11
and NBS/ISCC dictionaries for image in Fig. 4(a). The number
of colors in the final palette is 10. (a) List of names using the
X11 dictionary (8 names). (b) List of names using the NBS/ISCC
dictionary (10 names).
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