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Abstract

In this paper, we address a complex image registration issuearising when the dependencies between

intensities of images to be registered are not spatially homogeneous. Such a situation is frequently

encountered in medical imaging when a pathology present in one of the images modifies locally intensity

dependencies observed on normal tissues. Usual image registration models, which are based on a single

global intensity similarity criterion, fail to register such images, as they are blind to local deviations of

intensity dependencies. Such a limitation is also encountered in contrast enhanced images where there

exist multiple pixel classes having different properties of contrast agent absorption. In this paper, we

propose a new model in which the similarity criterion is adapted locally to images by classification of

image intensity dependencies. Defined in a Bayesian framework, the similarity criterion is a mixture of

probability distributions describing dependencies on twoclasses. The model also includes a class map

which locates pixels of the two classes and weights the two mixture components. The registration problem

is formulated both as an energy minimization problem and as aMaximum A Posteriori (MAP) estimation

problem. It is solved using a gradient descent algorithm. Inthe problem formulation and resolution, the

image deformation and the class map are estimated at the sametime, leading to an original combination of

registration and classification that we call image classifying registration. Whenever sufficient information

about class location is available in applications, the registration can also be performed on its own by fixing

a given class map. Finally, we illustrate the interest of ourmodel on two real applications from medical
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imaging: template-based segmentation of contrast-enhanced images and lesion detection in mammograms.

We also conduct an evaluation of our model on simulated medical data and show its ability to take into

account spatial variations of intensity dependencies while keeping a good registration accuracy.

Index Terms

Image registration, mixture models, lesion detection.

I. INTRODUCTION

Image registration is a central issue of image processing, which is particularly encountered in medical

applications [1]–[5]. Medical image registration is critical for the fusion of complementary information

about patient anatomy and physiology, for the longitudinalstudy of a human organ over time and the

monitoring of disease development or treatment effect, forthe statistical analysis of a population variation

in comparison to a so-called digital atlas, for image-guided therapy, etc.

Image registration consists in mapping domains of several images onto a common space and results in

some corrections of geometric differences between the images. Most of classical registration techniques

rely upon the assumption that there exists a relationship between intensities of images to be registered

and that this relationship remains the same all over the image domains [6]–[11]. This assumption is

typically made when applying registration techniques based on intensity criteria such as the sum of

squared differences, the correlation ratio, the correlation coefficient or the mutual information [10].

But such an assumption is not always satisfied. As an example,let us mention the medical imaging

case when a contrast agent is used to enhance some pathological tissues (lesions) [12], [13]. After

enhancement, intensities of normal tissues and lesions arelikely to differ, even though they can be the

same before enhancement. So, a same intensity before enhancement may correspond to several intensities

after enhancement. Hence, with contrast-enhanced imagingmodalities, the relationship between image

intensities is neither unique, nor spatially invariant. Itmainly depends on the type of observed tissues. In

such cases, ignoring the spatial context may lead to locallyestablishing an inaccurate or even inconsistent

correspondence between homologous geometric structures.This issue was documented in [13], [14],

where it is shown that such non-rigid registration would wrongly change the size of non-deformed

contrast-enhanced structures.

In the literature, there have been several works dealing with image registration in the presence of

multiple pixel classes. These works can mainly be divided into two categories: those based on robust

estimation and mixture models, and those combining registration and classification (or segmentation).
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Robust estimation is a statistical approach which has been widely applied to image processing [15]. This

approach involves the definition of outliers, which are characterized as elements deviating from a normal

model, detected and possibly rejected [16]–[19]. Applied to optical flow estimation and image registration

[20]–[25], robust estimation helps to reduce the influence of large insignificant image differences on the

optical flow or the deformation estimation. However, these approaches offer poor characterizations of

outliers, which are usually described as pixels generatinglarge image differences. They cannot deal with

complex situations arising from medical imaging applications.

More general robust estimation approaches are based on mixture models [18] and characterize outliers

by some specific probability distributions [26]–[34]. In optical flow computation, a mixture model was

used to distinguish between several layers of movements andan outlier class [31]. In image registration,

some authors used a mixture model in which image differencesgenerated by outliers are represented

by a mixture component [29], [30]. Similar approaches could be used in medical image registration

considering medical lesions as outliers [26]–[28]. However, the main and important difference with the

model we introduce in this paper is that the mixture models proposed above do not use any spatial and

geometric information about the pixel classes but only pixel-independent mixing proportions.

In other approaches, spatial informations derived from segmentation were used to adapt regionally

the similarity criterion describing intensity relationships [35]–[38]. Such segmentation-based approaches

require a preliminary segmentation of the images which, obviously, cannot always be obtained. For

instance, in dynamic contrast-enhanced sequences, the image segmentation has to be estimated from the

registered images [39].

Image segmentation has also been combined with atlas-basedregistration in Bayesian frameworks [40],

[41], where mixture models were used to represent pixel intensities of different anatomical structures.

In other works, Markov random fields were employed to describe a label map of pixel classes. The

registration and the segmentation were then computed by theMaximum A Posteriori (MAP) estima-

tion [42]–[44]. In such approaches, one can incorporate prior information about the lesion shape and

localization. However, the proposed methods used simple characterizations of intensity variations.

In this paper, we deal with the issue of registering images whose intensity relationship is spatially

dependent. We propose a new technique where the registration is simultaneously combined to a pixel

classification. This classification provides some spatial information about intensity relationships. We use

mixture models to take into account complex intensity changes and Markov random fields to label pixels.

The paper is organized as follows. Section 2 describes the theoretical foundation of the proposed new

method. Then, the numerical aspects are discussed in Section 3. In Section 4, experiments are conducted
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both on simulated and on real data to evaluate the method performance. Finally, some conclusions and

possible extensions of the proposed approach are discussedin the last section.

II. T HE PROPOSED METHOD

A. The Bayesian framework

Let m and n be two integers, andΩd = {0, ...,m − 1} × {0, ..., n − 1} be a discrete grid of size

N = m n. Observed images are real-valued functions defined onΩd. They can be interpolated on the

continuous domainΩ = [0,m − 1] × [0, n − 1] naturally associated to the gridΩd. For convenience,

elements ofΩd are ordered and will be denotedxi for i = 1, · · · , N .

The registration of two imagesI and J consists in finding a mappingφ : Ω → Ω for which the

deformed imageIφ := I ◦ φ of the so-called source imageI is as similar as possible to the so-called

target imageJ .

In a Bayesian framework, the mappingφ is usually obtained as a MAP estimate (see [45] and references

therein). Specific to this framework, images and deformations are assumed to be some realizations of

random fields indexed onΩd andΩ, respectively. For each pointxi of Ωd, I(xi) andJ(xi) are realizations

of two real-valued random variables and, for each pointx of Ω, φ(x) is a realization of a random vector

with values inΩ. The relationships between the intensities of the registered images are then statistically

described by a probability distribution ofJ given I, φ and a set of parametersθ (this conditional

distribution is denoted byπ(J | I, φ; θ)). Usually, the variablesJ(xi) are assumed to be independent

conditionally to the variablesIφ(xi). Hence,π(J | I, φ; θ) can be written as

π(J | I, φ; θ) =
N∏

i=1

π(J(xi) | Iφ(xi); θ). (1)

Because of noise, and also because it is a very generic choice, it is possible to assume that the intensity

differences betweenJ(x) andIφ(x) follow a Gaussian distribution with meanµ and varianceσ2 at each

pixel x ∈ Ωd, leading to the distribution

π(J(x) | Iφ(x); θ) =
1√
2πσ

exp

(
− 1

2σ2
(J(x)− Iφ(x)− µ)2

)
, (2)

with θ = (µ, σ). In this definition, it is worth noticing that the meanµ and the varianceσ2 do not depend

on any positionx. Consequently, the intensity relationship between imagesis spatially homogeneous. Let

us further mention that, similarly to this particular Gaussian distribution, distributions associated to other

usual criteria (e.g. correlation ratio, correlation coefficient, or mutual information) are also homogeneous.
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Besides, a prior probability distribution is set on the mappingsφ in order to favour smooth deformations

as solutions of the registration problem. Letφ = id+u be written as the sum of the identity mapid and

a displacement fieldu, seen as an element of a Hilbert spaceH equipped with an inner producta(·, ·).
Let thenH̃ be a finite-dimensional approximation subspace ofH which is spanned by a basisB = (ψi)

ne

i=1,

with ne ∈ N
∗. In H̃, a displacementu is uniquely determined by a vector of coefficientsb = (βi)

ne

i=1

such thatu =
∑ne

i=1 βi · ψi. In the following, the deformationsφ are assumed to be expanded into the

subspaceH̃ and identified with their decomposition coefficientsb. We will also use the notationIb

instead ofIφ. Several choices are possible for the basisB: Fourier basis, sine and cosine transform basis

functions, B-splines, piecewise affine or trilinear basis functions, wavelets (see [46] for a review), etc.

We consider an inner product oñH, given bya(u, u) = b
TAb, wherebT is the transpose ofb, andA

is a symmetric positive-definite matrix. OñH, we then define a centered multivariate normal distribution

with covariance matrixA−1 given by

π(b) = (2π)
−ne

2

√
det(A−1)e−

1

2
bTAb. (3)

This prior distribution is used as a regularity term to enforce the smoothness of the deformationsφ.

A usual choice fora(·, ·) is the bilinear form

a(u, v) =
1

2

∫

Ω

2∑

i,j=1

λ

2

(
∂ui(x)

∂yi

∂vj(x)

∂yj

)
dy+

1

2

∫

Ω

2∑

i,j=1

µ

4

(
∂ui(x)

∂yj
+
∂vj(x)

∂yi

)2

dy, (4)

defined forλ > 0 andµ > 0, which is an inner product on the Sobolev spaceH1(Ω;R2) and is related

to the linearized strain energy of elastic materials [47]–[50]. We choose here the elastic regularization

without aiming at a specific application, but knowing that this term enables to deal with many medical

imaging applications. Other regularity terms could be better adapted to specific applications. They can be

easily introduced in the proposed model. Other choices include the membrane energy [51], the bending

energy [52], etc. The matrixA can also be estimated from the data using for instance EM algorithms

with stochastic approximation [53], [54].

In the model we propose, we will use a basisB constructed using the finite element method (the details

of the construction will be given in SectionIII ) and the inner product given by Equation (4).

The registration problem is defined as the problem of finding the MAP, i.e. maximizing the posterior

distributionπ(b|I, J ; θ) with respect to the coefficientsb. Using Bayes’ Theorem, this problem can be
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equivalently formulated as finding

b
⋆ = argmaxbπ(J |I,b; θ) π(b). (5)

Applying the − log function to all probability distributions, this maximization problem can also be

transformed into the problem of minimizing the energy

E(b) = S(I, J,b; θ) +H(b), (6)

whereS(I, J,b; θ) = − log π(J |I,b; θ) andH(b) = − log π(b).

B. The two-class registration model

We now outline our new model. It is an extension of the model described in the previous section. The

main feature is the introduction and the estimation of a pixel classification to take into account the spatial

variations of the statistical relationships between the intensities ofJ andIφ.

1) Intensity relationships:In Equation (2), the probability distributionπ(J(x)|Ib(x); θ) describing

the intensity relationship is spatially homogeneous. We now assume that the pixels of imageJ can be

divided into two classes (labeled0 and 1) where the intensity relationships are different and denoted

respectively byπj(J(x)|Ib(x); θj) , j ∈ {0, 1}. Let alsoL(x) be the probability for a pixelx to belong

to the class1. Then, the intensity relationship at pixelx is described by the mixture distribution

π(J(x)|Ib(x), L(x); θ) = π0(J(x)|Ib(x); θ0) (1− L(x))

+ π1(J(x)|Ib(x); θ1) L(x), (7)

whereθ = (θ0, θ1).

Let us denoteLi = L(xi) andL = (L1, · · · , LN )T the vector of class probabilities on grid pixels.

Assuming the conditional independence on grid points, we obtain the global conditional distribution

π(J |Ib,L; θ) =
N∏

i=1

(
π0(J(xi)|Ib(xi); θ0) (1− Li)+

π1(J(xi)|Ib(xi); θ1) Li

)
. (8)

In an application of our model to lesion detection, the classification aims at distinguishing pixels on

a lesion (class 1) from those outside any lesion (class 0). Incontrast-enhanced images, the enhancement

is more important on lesions than it is on normal tissues, leading to higher image differences on lesions.

Assuming that the distributions are Gaussian on both classes, we can define distributionsπ0 andπ1 as

May 10, 2012 DRAFT



IEEE TRANSACTIONS ON IMAGE PROCESSING, TIP-08569-2012.R1, MAI 2012 8

in Equation (2) using two different sets of parameters:θ0 = (µ0, σ0) for π0 and θ1 = (µ1, σ1) for π1,

with µ1 > µ0. Another possibility is, as in robust estimation, to consider elements of class1 as outliers

of class0 and put no specific information on class1 by definingπ1 as the uniform distribution

π1(J(x)|Ib(x); θ1) =
1

Ngl
, (9)

whereNgl is the number of possible gray-levels ofJ .

Finally, we define a prior distribution on the class mapL itself in order to introduce some constraints

on the spatial homogeneity of the pixels of a same class. For that purpose, we equip the gridΩd with a

neighborhood system (either a4 or 8 neighborhood system) and assume that the class mapL is a Markov

random field on it [55]. We have considered two prior distributions onL. The first one is a Gaussian

model, given by

π(L) =
1

Z
exp

(
−α1

N∑

i=1

L2
i

−α2

∑

{i,j=1,··· ,N ;xi∼xj}

(Li − Lj)
2



 , (10)

wherexi ∼ xj means thatxi andxj are neighboring pixels,Z is a normalization constant,α1 > 0 and

α2 > 0. The second model, which is a particular case of the Gaussianmodel whenL is binary with

range{0, 1}, is the Bernoulli model

π(L) =
1

Z
exp

(
−α1

N∑

i=1

Li

+α2

∑

{i,j=1,··· ,N ;xi∼xj}

LiLj


 , (11)

whereα1 > 0 andα2 > 0. If we let X = 2L − 1, this model is equivalent to the Ising model [56].

In models (10) and (11), the parameterα1 restricts the amount of pixels of the class1, whereas the

parameterα2 enforces the spatial homogeneity of the classes.

2) Classes and deformations:In some situations, one must locally adapt the deformation field to

structures that must be kept rigid, using a tissue-dependent filtering technique. Otherwise, rigid tissue,

such as bone, could be deformed elastically, growth of tumors may be concealed, and contrast-enhanced

structures may be reduced in volume [57]. Such a specificity could be taken into account in our Bayesian

framework by defining a distribution on deformations that would depend on classes: setting distributions

π0(b) andπ1(b) respectively for the two classes, we could define a distribution π(b;L) as a mixture of
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the distributionsπ0(b) andπ1(b).

However, such an option was not considered in our applications: deformation differences between lesions

and normal tissues are not significant and do not justify increasing the complexity of the model. Hence, in

this work, we rather make the assumption that the deformations and the classes are independent. Further

assuming that they are both independent from images, we get

π(b,L | I) = π(b) π(L)

3) MAP estimations:In our Bayesian framework, the registration problem consists in maximizing the

posterior distributionπ(b,L|I, J ; θ) with respect to the deformationb and to the class mapL. In this

new formulation, registration and classification are both integrated in a single maximization problem, and

have to be performed simultaneously.

Using Bayes’ Theorem, it comes that

π(b,L|I, J ; θ) =
π(J |I,L,b; θ) π(b,L|I)

π(J |I; θ)

=
π(J |I,L,b; θ) π(b) π(L)

π(J |I; θ) (12)

Hence the registration problem can be restated in terms of likelihood and prior distributions as

(b̃, L̃) = argmaxb,L π(J |I,L,b; θ) π(b) π(L). (13)

Again, by application of the− log transform to distributions, this maximization problem canbe trans-

formed into the problem of minimizing the energy

E(b,L) = S(I, J,b,L; θ) +H(b) +R(L), (14)

whereS(I, J,b,L; θ) = − log π(b,L|θ, I, J), R(L) = − log π(L) and,H(b) = − log π(b) is as defined

in Equation (6).

Besides, when the class mapL is known (L ∈ [0, 1]N ), it is also possible to only solve the registration

problem

b̃ = argmaxb π(J |I,L,b; θ) π(b). (15)

This leads to a registration with two classes and can be used for template-based segmentation (see Section

IV-B1).
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4) Parameters:The distributions defined above involve several parameters. In our application, we used

the prior deformation distribution defined by Equation (4) and set manually the Lame constantsλ andµ

from experiments. We also set manually the meanµ0 and the varianceσ0 of the Gaussian distribution

π0 of the class0, and the weightsα1 andα2 of the Gaussian or Bernoulli model in Equations (10) and

(11). The other parameters, which are the meanµ1 and the varianceσ1 of the Gaussian distributionπ1

on class1, are estimated from the data. We assume thatµ1 belongs to an interval[µmin, µmax] andσ1

to another interval[σmin, σmax] and put, as a prior, uniform independent distributions ofµ1 andσ1 on

these intervals. The parameter vectorθ is decomposed asθ = (θ0, θ1), whereθ0 = (µ0, σ0) is known and

θ1 = (µ1, σ1). This parameterθ1 is then estimated, together with the deformation and the classification

by solving the following MAP estimation problem:

(b̃, L̃, θ̃1) = argmaxb,L,θ1 π(J |I,L,b; θ0, θ1) π(b) π(L) π(θ1). (16)

As before, this is equivalent to the minimization of an energy of the form

E(b,L, θ1) = S(I, J,b,L; θ) +H(b) +R(L), (17)

under the constraint thatµ1 ∈ [µmin, µmax] andσ1 ∈ [σmin, σmax].

III. N UMERICAL RESOLUTION

In this section, we present the numerical resolution of the combined registration and classification

problem defined in Equation (16) or equivalently in Equation (17), using the gradient descent algorithm.

A. Problem discretization

The discretization of the problem is based on the construction of a finite dimensional basis of defor-

mationsB using the finite element method [58].

First, the domainΩ is partitioned into a set of triangles whose vertices are in aset denotedΩh = {ei ∈
Ω, 1 ≤ i ≤ ne}. Such a partition is obtained by applying a Delaunay triangulation to the continuous

domainΩ. Then, aP1-Lagrange finite element functionΦi is associated to each vertexei whereΦi

is the only piecewise affine function on the triangulated domain satisfyingΦi(ej) = 1 if i = j and 0

otherwise. The functionΦi is locally supported on triangles of the partition havingei as vertex (Figure

1).

Next, we defineψ1
i = (Φi, 0), ψ2

i = (0,Φi), and the family of functionsB = {ψk
i , i = 1, ..., ne, k =

1, 2}. The family B spans a finite dimensional spacẽH1 that is a subset of the infinite dimensional
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(a)

(b)

Fig. 1. Discretization of the deformations domainΩ: (a) The mesh, (b) aP1-Lagrange finite element functionΦi is associated

to a vertexei (piecewise affine function).

Sobolev spaceH1(Ω;R2). In H̃1, a displacementu can be written as

u =

ne∑

i=1

(β1i ψ
1
i + β2i ψ

2
i ) =

ne∑

i=1

βi · ψi, (18)

whereψi = ψ1
i + ψ2

i andβi = (β1i , β
2
i )

T ∈ R
2. We denoteb = (β11 , β

2
1 , · · · , β1ne

, β2ne
)T . Then, up to a

constant, the energy of the deformation given by Equations (3) and (4) becomes

H(b) =
1

2
a(u, u)

=
1

2

ne∑

i=1

βTi Aiiβi +

ne∑

i,j=1,i 6=j

βTi Aijβj , (19)

whereAij =


a

11
ij a12ij

a21ij a22ij


 are 2 × 2-matrices defined byakmij = a(ψk

i , ψ
m
j ) for k,m = 1, 2. Choosing

the elasticity potential in Equation (4), it can be shown that each matrixAij is symmetric and that

Aij = Aji. Besides, since the functionsψk
i are locally supported on the triangles whose vertices contain

ei, the matricesAij are null whenever the verticesei and ej are not on a same triangle. Hence,H(b)

reduces to

H(b) =
1

2

ne∑

i=1

βTi Aiiβi +

ne∑

{i,j=1,ei∼ej}

βTj Aijβi. (20)

whereei ∼ ej indicates thatei andej are different vertices of a same triangle.

B. Gradient descent

The energyE in Equation (17) is non-linear and non-convex with respect tob andθ. A first approach

to minimize this energy is to approximate the solutions of the Euler equations associated toE using a

gradient descent algorithm [59].
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Let X denote the vector formed by all the variables

X = (b,L, θ1)

= (β1, ..., βne
, L1, ..., LN , µ1, σ1)

The gradient descent algorithm consists in defining an initializationX(0) of X and iterating the scheme

(t > 0)

X(t+1) = X(t) − ρ(t) · ∇E(X(t)). (21)

until stabilization;ρ(t) is a vector of the same size asX and with positive components. In this equation,

∇E(.) is the gradient ofE with respect toX. To compute this gradient, we need the expression of the

partial derivatives of the energy. We have

∂E
∂βk

= Akkβk +
∑

{i=1,··· ,ne;ei∼ek}

Akiβi

−
N∑

i=1

(
p0i

(
J(xi)− Ib(xi)− µ0

)

σ20
+ p1i

(
J(xi)− Ib(xi)− µ1

)

σ21

)

.Φk(xi)∇I(xi + u(xi)),

∂E
∂Li

= 2α1Li + 2α2

∑

j=1,··· ,N,xi∼xj

(Li − Lj)

+
π0(J(xi)|Ib(xi); θ0)− π1(J(xi)|Ib(xi); θ1)

π(J(xi)|Ib(xi); θ)
,

∂E
∂µ1

= − 1

σ21

N∑

i=1

p1i

(
J(xi)− Ib(xi)− µ1

)
,

∂E
∂σ1

= − 1

σ21

N∑

i=1

p1i

(
(J(xi)− Ib(xi)− µ1)

2

σ21
− 1

)
,

p0i =
(1− Li) π0(J(xi)|Ib(xi); θ0)

π(J(xi)|Ib(xi), Li; θ)
,

p1i =
Li π1(J(xi)|Ib(xi); θ1)
π(J(xi)|Ib(xi), Li; θ)

. (22)

The local weightpji represents the probability that the pixelxi may be considered as an element of the

classj. It combines both a spatial information provided byLi and an intensity information given by the

probability ratio ofπj overπ.

Besides, we use the projected gradient algorithm [59] to comply with the constraint on the parameter

θ1 = (µ1, σ1): if µ(t+1)
1 is larger thanµmax (respectively smaller thanµmin), we replace it byµmax

(respectivelyµmin) and we apply the same method forσ1.
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C. Simulating elastic deformations

In order to have a validation of the proposed classifying registration model, we will need to make

experiments on simulated image pairs (see the experimentalsection). To obtain such pairs, we have to

be able to simulate deformations that are samples from the probability distributionπ(b) = exp(−H(b)).

The aim of this subsection is to explain how these samples areobtained. We consider onΩh the following

neighborhood system: two different verticesei and ej of Ωh are neighbors (ei ∼ ej) if they are on a

same triangle. We denote byC1 and C2 the sets of cliques of order1 and 2. From the decomposition

(20), we can write

H(b) =
1

2

ne∑

i=1

βTi Aiiβi

︸ ︷︷ ︸
Sum onC1

+

ne∑

i,j=1,ei∼ej

βTi Aijβj

︸ ︷︷ ︸
Sum onC2

. (23)

So, the elasticity displacementu is a Gibbs random field and, consequently, a Markov random field [60].

We can show that local conditional probability distributions π(βi|βj , j ∈ Ni) are Gaussian distributions

with mean−A−1
ii Wi, whereWi =

∑ne

j=1,j 6=iAijβi, and covariance matrixA−1
ii . The mean balances the

displacement induced by neighboring vertices and the matrix A−1
ii acts as a local filter. The vectorb

is a centered Gaussian Markovian random field. Elastic deformation can then be simulated using the

Cholesky factorization of the covariance matrixA−1 [60].

D. Implementation details

For the implementation of the gradient descent algorithm, we use the FREEFEM++ software [61],

dedicated to the finite element method. For the computational cost, we observed that, on images of size

200× 200 pixels and with500 finite elements, the algorithm approximately takes about one minute (the

computations were performed on a core 2 duo 2GH and 2Go RAM processor).

In all the experiments, the initialization is always the same: L = 0 andu = 0 (i.e. all pixels belong to a

same first class and there is no displacement). In order to accelerate the convergence and the precision of

the technique, we use a multi-grid approach, which consistsin first initializing the deformations with a

coarse approximation using a small number of vertices and then increasing this number when necessary.

For an image of size256 × 256, we use four levels of resolution with respectively152, 302, 452, and

652 vertices. At each resolution, we have made four iterations of the gradient descent to estimate the

coordinate of the displacement at each vertex.

May 10, 2012 DRAFT



IEEE TRANSACTIONS ON IMAGE PROCESSING, TIP-08569-2012.R1, MAI 2012 14

IV. EXPERIMENTS

In this section, we show several experiments with the classifying registration model, both on synthetic

and on real data. We compare this model to a classical one based on the sum of squared differences

(SSD) and corresponding to a particular case of the classifying registration model obtained when the

so-called class mapL is set to be equal to 0 at every pixel. In all the experiments, we use a Gaussian

distribution to describe the image intensity dependency law π0 on the first class with parameter values

(mean and variance) estimated from an image patch.

A. Model validation

Validation and comparison of medical image registration algorithms are two important issues [62], [63].

The requirements to perform a validation are: the definitionof a validation methodology, which should

include the design of validation datasets, the definition ofa corresponding ”ground truth”, a validation

protocol and some validation metrics. Now, there is rarely if ever a “ground truth” correspondence map

that would enable judging the performance of a non-rigid registration algorithm. In our approach, we

will use simulated deformations and images to get a “ground truth” to get an evaluation of registration

and classification algorithms.

Different sub-images (of size256 × 256 pixels each) were extracted from clinical screen-film mam-

mograms of the MIAS database [64]. Each image was transformed by a simulated elastic deformation

and corrupted by Gaussian noise with distributionN (0, 9). Mammographic masses were then simulated

by adding to the deformed and noisy mammograms a Gaussian noise with distributionN (µ1, 9) on a

disk-shaped region of radiusR. Figure2 shows a typical mammogram sub-image and its deformation

including an additive mass.

From each mammogram sub-image, we have simulated several target images by changing parameter

specifications. We thus obtained a database containing576 pairs of images by varying lesion location, size

R ∈ {0, 5, 10, 15}, contrastµ1 ∈ {5, 10, 15} and deformation magnitudeDm ∈ {2, 4, 6} (this deformation

magnitude is defined asD2
m = 1

N

∑N
i=1 ‖ u(xi) ‖2). This database also contains144 “normal” pairs of

images without simulated mass.

We perform the registration of each pair of the database withboth the full classifying model (Equation

(17)) and the SSD model. For the classifying registration, we use a Gaussian mixture whereπ0 is a

Gaussian distributionN (0, 9) while the parameters(µ1, σ1) of π1 are all estimated. For the regularization

of the lesion map, we use a Bernoulli model (binary lesion map) with empirical choicesα1 = 7 and

α2 = −0.7.
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(a) (b) (c) (d)

Fig. 2. A simulated pair of images: (a) The source image extracted from a real mammogram, (b) The deformed source image,

(c) The target image obtained by adding a Gaussian noise withdistributionN (µ1, 9) on a disk-shaped region of the image (b),

(d) Differences between the source and the target images.

We use two criteria for the evaluation of the registration. The first one involves the ground truth and

compares the real displacement(ureal) and the estimated(uestim) one. The registration error is defined as

the mean distance between them, counted in pixels:

ErrL2 =

√√√√ 1

N

N∑

i=1

||ureal(xi)− uestim(xi)||2 (24)

The second criterion is computed as the percentage of reduced differences between the source and target

images:

DiffImg = 100 ·


1−

√∑N
i=1(J(xi)− Ib(xi))2

√∑N
i=1(J(xi)− I(xi))2


 (25)

When the values of the criterionDiffImg are negative, theL2 distance between the registered images

is higher than the one between unregistered images. When it is computed only over lesion pixels, the

second criterion can also be used for the evaluation of the detection. Negative values occuring on lesion

regions show that the model preserves and enhances the imagedifferences on points of the lesion class

and thus improves lesion detection.

For a given pair of images we compute the values ofErrL2 on the output of both the classifying

model and the SSD model. We also consider the difference of the two values thus obtained. The same

computations are performed for the values ofDiffImg. We show the statistical analysis of the obtained

values by giving confidence intervals for confidence level of0.6 [65].

TablesI andII summarize the obtained results, each line corresponding toa specific value of one of the

parameters (µ1, R or Dm); the confidence interval is computed over the pairs of the database having this

specific parameter value.
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SSD model Classifying model Difference between both models

Global Lesion Global Lesion Global Lesion

0.51 ; 0.69 0.91 ; 2.56 0.47 ; 0.61 0.31 ; 1.28 −0.09 ; 0.02 −1.34 ; 0.39

R = 5 0.51 ; 0.66 0.55 ; 1.70 0.45 ; 0.60 0.30 ; 1.04 −0.01 ; 0.01 −1.03 ; 0.13

10 0.52 ; 0.69 0.93 ; 2.56 0.45 ; 0.61 0.36 ; 1.37 −0.06 ; 0.02 −1.73 ; 0.15

15 0.53 ; 0.74 0.90 ; 2.69 0.44 ; 0.63 0.41 ; 1.87 −0.16 ; 0.043 −1.35 ; 0.92

µ1 = 10 0.46 ; 0.62 0.74 ; 1.72 0.45 ; 0.62 0.50 ; 1.96 −0.01 ; 0.02 −0.30 ; 0.38

15 0.50 ; 0.67 0.95 ; 2.41 0.45 ; 0.61 0.34 ; 1.10 −0.06 ; 0.01 −1.35 ;−0.26

20 0.50 ; 0.70 1.08 ; 2.92 0.45 ; 0.60 0.42 ; 0.91 −0.13 ; 0.01 −2.09 ;−0.45

Dm = 2 0.53 ; 0.59 0.92 ; 2.13 0.53 ; 0.57 0.39 ; 0.80 −0.02 ; 0.00 −1.26 ; 0.04

4 0.56 ; 0.62 0.89 ; 2.32 0.57 ; 0.61 0.30 ; 1.04 −0.02 ; 0.01 −1.20 ; 0.18

6 0.64 ; 1.64 0.67 ; 3.58 1.31 ; 2.20 0.45 ; 3.91 0.39 ; 0.79 −1.38 ; 1.14

TABLE I

A FIRST EVALUATION OF THE REGISTRATION PERFORMANCES OF THESSDMODEL AND OF THE CLASSIFYING MODEL.

THIS TABLE PRESENTS THE CONFIDENCE INTERVALS OF LEVEL0.6 OF THE MEAN DISTANCE CRITERIONErrL2 (EQUATION

(24)) BETWEEN THE REAL AND THE ESTIMATED DEFORMATIONS, COMPUTED OVER THE WHOLE IMAGE(COLUMN

“GLOBAL”) OR ONLY ON THE “L ESION”. T HE LAST DOUBLE-COLUMN GIVES THE CONFIDENCE INTERVAL OF THE

DIFFERENCE BETWEEN VALUES OF THEErrL2 CRITERION OBTAINED WITH THE SSDAND CLASSIFYING MODELS. A

NEGATIVE VALUE OF THE DIFFERENCE INDICATES THAT THE CLASSIFYING MODEL IS MORE ACCURATE THAN THESSD

ONE.

Columns “global” of TableI reveal that the accuracy of the classifying model and of the SSD model

are about the same when evaluated over whole images (i.e. inside and outside lesions); the differences

between theErrL2 values of both models vary between -0.09 and 0.02 pixels. However, on columns

“lesion” of TableI, we observe that SSD registrations are impaired by the presence of a lesion whereas

those of the classifying model seem to be more robust. The SSDmodel accuracy on lesions is lower

than the global one, and decreases as the lesions become larger or more constrasted. This is in sharp

contrast with the classifying model whose accuracy on lesions is close to the global one and does not

vary significantly according to lesions size and constrast.

TableII gives another viewpoint on model evaluation, which completes the previous one. On columns

“global”, we can see that the SSD model reduces slightly moresource and target intensity differences

than the classifying one. On columns “lesion”, we further observe that, on lesions, these differences

are more compensated by the SSD model than by the classifyingone. Contrarily to the SSD model, the

classifying model can detect lesions and preserves the differences they cause. With the classifying model,
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SSD model Classifying model Difference between both models

Global Lesion Global Lesion Global Lesion

35 ; 51 5 ; 31 30 ; 43 −2 ; 24. −2 ; 0 −14 ; −4

R = 5 36 ; 51 4 ; 35 31 ; 43 −11 ; 23 −0.3 ; 0 −10 ; 0.6

10 39 ; 55 4 ; 32 30 ; 42 2 ; 26 −1 ; 0 −13 ; −4

15 34 ; 50 5 ; 28 34 ; 49 −3, 17 −3 ; 0 −15 ; −7

µ1 = 10 36 ; 52 10 ; 42 31 ; 43 −2 ; 28 −1 ; 0 −9 ; −1

15 35 ; 51 5 ; 32 30 ; 43 −1 ; 24 −2 ; 0 −16 ; −7

20 36 ; 51 6 ; 27 28 ; 43 −3 ; 17 −3 ; 0 −15 ; −7

Dm = 2 30 ; 34 5 ; 26 30 ; 34 −6 ; 13 −1 ; 0 −14 ; −4

4 43 ; 49 6 ; 34 42 ; 49 −1 ; 28 −1 ; 0 −13 ; −4

6 48 ; 55 5 ; 36 41 ; 50 −1 ; 26 −7 ; −4 −15 ; −4

TABLE II

A SECOND EVALUATION OF THE REGISTRATION PERFORMANCES OF THESSDMODEL AND OF THE CLASSIFYING MODEL.

THIS TABLE PRESENTS THE CONFIDENCE INTERVALS OF LEVEL0.6 OF THE MEAN PERCENTAGE OF REDUCED DIFFERENCES

CRITERIONDiffImg (EQUATION (25)) BETWEEN THE SOURCE AND THE TARGET IMAGES, COMPUTED OVER THE WHOLE

IMAGES (COLUMN “GLOBAL”) OR ONLY ON THE “L ESIONS”. T HE LAST DOUBLE-COLUMN GIVES THE CONFIDENCE

INTERVAL OF THE DIFFERENCES BETWEEN THE VALUES OF THEDiffImg CRITERION OBTAINED WITH THE CLASSIFYING

AND THE SSDMODELS.

lesions get better and better preserved in image differences when they get larger or more contrasted.

Detection evaluation:Lesion detection from bilateral or temporal mammograms canbe performed

by thresholding the differences between the registered images [66]. The classifying model provides a

lesion mapL whose spatial consistency is ensured by the use of a prior term. However, to compare the

detection performances of the SSD model and of the classifying model depending on registration results,

we threshold the registered image differences obtained with both models. When comparing the binary

image obtained by thresholding to the ground truth, we can determine for each experiment the number

of false positives (FP ), false negatives (FN ), true positives (TP ) and true negatives (TN ). A graphical

representation of these two indices are obtained as a Receiver Operating Characteristic (ROC) curve [67]

expressing the sensitivity (Sensitivity = TP
TP+FN

) versus the false positive rate (Specificity = FP
TN+FP

),

for different values of the thr! eshold. In such a representation, the best possible prediction method would

yield a point in the upper left corner (coordinate(0, 1) of theROC space) representing100% sensitivity

(no false negatives) and100% specificity (no false positives). On Figure3, we superimpose theROC

curves obtained with the two registration models. Figure3 shows that the classifying registration method
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Fig. 3. ROC curves of the detection results obtained respectively with the SSD and classifying models.

improves the detection results by reducing the false positive rate. For instance, for a detection rate of

80% (resp.70%), the false positive rate is0.115% (resp.0.042%) with the SSD model and only0.064%

(resp.0.018%) with the classifying model.

B. Some other applications of the model

1) Template-based segmentation:In the example shown on Figure4, we apply the classifying model

to contrast-enhanced CT axial images of the thorax. The contrast agent enhances the superior vena cava

(V ) and the aorta arch (C). First, we manually segment these two regions in the post-contrast image.

Then, we register the post-contrast image to the pre-contrast one by using either the SSD model or the

classifying model with the exact class map and a uniform distribution π1. Registering the post-contrast

image (here taken as the source image) with the pre-contrastimage (taken as the target image) also

allows us to transport the segmentation made on the source image to the target image; such a technique

is known as template-based segmentation. The results, shown on Figure4, illustrate the superiority of the

classifying model which, contrarily to the SSD model, takesinto account the contrast variations and does

not shrink contrast-enhanced regions. We further quantified the amount of shrinkage on the enhanced

regions on9 couples of images representing several different cases. Onaverage, the amount of shrinkage

was29.5% for theSSD-based registration and only6.35% for the classifying registration.

2) Mammogram registration:On the example shown on Figure5, we process a pair of bilateral

mammograms (case201 of the MIAS database [64]) which contains a lesion appearing as an asymmetric

density.

We apply the classifying model in the class map estimation mode (minimization of Equation (17)):

the binary class mapL is estimated, together with lesion-related parametersµ1 andσ1 of the distribution

π1. A Bernoulli prior is used for the definition of the binary lesion map with heuristic choicesα1 = 7
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(a) (b) (c)

(d) (e)

(f) (g)

Fig. 4. A comparison of the SSD model and the classifying model for template-based segmentation of contrast-enhanced

images. For the classifying model, the class map is known andthe distributionπ1 is set as a uniform distribution. Image (a)

is the post-contrast image (source image), image (b) is the pre-contrast image (target image), and image (c) is the two-class

segmentation of the post-contrast image. Images (d) and (e)are respectively the registered source image and the transported

segmentation obtained by the SSD registration, whereas images (f) and (g) are those obtained by the classifying model.

et α2 = −0.7.

By comparison of images (c) and (i) of Figure5, we can see that the initial image differences inside

the lesion region are preserved after a classifying registration while those outside are attenuated. In other

words, the classifying model enhances the lesion in image differences. Such a feature is particularly

interesting for lesion detection as it can help reducing thenumber of false positives. The classifying

model also overcomes a drawback of the usual SSD model which tends to reduce both normal and

pathological asymmetries appearing in image differences,as it can be observed on image (f) of Figure5.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 5. Images (a) and (b) form a bilateral pair of mammogramsshowing a pathological asymmetry contoured in image (d).

Image (c) is the initial difference between images (a) and (b). Image (e) is the deformation of image (a) obtained by the SDD

registration between images (a) and (b). Image (f) is the difference between image (b) and the registered image (e). The last

row shows the results of the classifying registration of images (a) and (b) : image (g) is the obtained class mapL ; image (h)
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V. D ISCUSSION

In this paper, we have proposed a Bayesian approach to perform simultaneously image registration

and pixel classification.

The proposed technique is well-suited to deal with image pairs that contain two classes of pixels with

different inter-image intensity relationships. We have shown through different experiments that the model

can be applied in many different ways. For instance if the class map is known, then it can be used for

template-based segmentation. If the full model is used (estimation of the class map, the registration and

the parameters of the distribution of the outliers), then itcan be applied to lesion detection by image

comparison.

Experiments have been conducted on both real and simulated data. They show that in the presence of an

extra-class (e.g. a lesion class in mammograms), the classifying registration improves both the registration

and the detection, especially when the deformations are small. The proposed model is defined using only

two classes but it is straightforward to extend it to an arbitrary number of classes. However, the estimation

of the number of classes would then appear as a critical issue. This will be part of some future research

and it will certainly require the use of model selection techniques.

The application of the classifying model was illustrated onmedical imaging data. But, the proposed

model is very generic and can be adapted to many other situations. In particular, we believe that the

model could also be helpful for motion estimation. The introduction of a second intensity relationship

class in the model would enable to deal with occlusions, which are a major issue of motion estimation.
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