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Registration
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Abstract

In this paper, we address a complex image registration issamg when the dependencies between
intensities of images to be registered are not spatially dgeneous. Such a situation is frequently
encountered in medical imaging when a pathology preseménod the images modifies locally intensity
dependencies observed on normal tissues. Usual imagéra¢igis models, which are based on a single
global intensity similarity criterion, fail to register sl images, as they are blind to local deviations of
intensity dependencies. Such a limitation is also enceadten contrast enhanced images where there
exist multiple pixel classes having different propertiédscontrast agent absorption. In this paper, we
propose a new model in which the similarity criterion is agalplocally to images by classification of
image intensity dependencies. Defined in a Bayesian framkgwloe similarity criterion is a mixture of
probability distributions describing dependencies on thasses. The model also includes a class map
which locates pixels of the two classes and weights the twaureé components. The registration problem
is formulated both as an energy minimization problem and Ms:@mum A Posteriori (MAP) estimation
problem. It is solved using a gradient descent algorithnth&nproblem formulation and resolution, the
image deformation and the class map are estimated at thetsaeydeading to an original combination of
registration and classification that we call image clagsifyregistration. Whenever sufficient information
about class location is available in applications, thestegiion can also be performed on its own by fixing

a given class map. Finally, we illustrate the interest of madel on two real applications from medical
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imaging: template-based segmentation of contrast-emtbintages and lesion detection in mammograms.
We also conduct an evaluation of our model on simulated naédiata and show its ability to take into

account spatial variations of intensity dependenciesenkéleping a good registration accuracy.

Index Terms

Image registration, mixture models, lesion detection.

. INTRODUCTION

Image registration is a central issue of image processihizhnis particularly encountered in medical
applications []-[5]. Medical image registration is critical for the fusion abraplementary information
about patient anatomy and physiology, for the longitudistady of a human organ over time and the
monitoring of disease development or treatment effectiferstatistical analysis of a population variation
in comparison to a so-called digital atlas, for image-gditteerapy, etc.

Image registration consists in mapping domains of sevarages onto a common space and results in
some corrections of geometric differences between the esagost of classical registration techniques
rely upon the assumption that there exists a relationshiwdsn intensities of images to be registered
and that this relationship remains the same all over the érdamains §]-[11]. This assumption is
typically made when applying registration techniques Hase intensity criteria such as the sum of
squared differences, the correlation ratio, the cor@tatioefficient or the mutual informatiori.())].

But such an assumption is not always satisfied. As an exargbles mention the medical imaging
case when a contrast agent is used to enhance some pathbliggties (lesions)1p], [13]. After
enhancement, intensities of normal tissues and lesionkatg to differ, even though they can be the
same before enhancement. So, a same intensity before emhanicmay correspond to several intensities
after enhancement. Hence, with contrast-enhanced imagouglities, the relationship between image
intensities is neither unique, nor spatially invariantmiinly depends on the type of observed tissues. In
such cases, ignoring the spatial context may lead to loealigblishing an inaccurate or even inconsistent
correspondence between homologous geometric structlilges.issue was documented ind], [14],
where it is shown that such non-rigid registration would mgly change the size of non-deformed
contrast-enhanced structures.

In the literature, there have been several works dealing witage registration in the presence of
multiple pixel classes. These works can mainly be dividdd iwo categories: those based on robust

estimation and mixture models, and those combining registr and classification (or segmentation).
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Robust estimation is a statistical approach which has bédsiyapplied to image processinif]. This
approach involves the definition of outliers, which are eletgrized as elements deviating from a normal
model, detected and possibly rejected]{[19]. Applied to optical flow estimation and image registration
[20]-[25], robust estimation helps to reduce the influence of largegiificant image differences on the
optical flow or the deformation estimation. However, theppraaches offer poor characterizations of
outliers, which are usually described as pixels generdtirge image differences. They cannot deal with
complex situations arising from medical imaging applicas.

More general robust estimation approaches are based oormixiodels 18] and characterize outliers
by some specific probability distributiong]-[34]. In optical flow computation, a mixture model was
used to distinguish between several layers of movementaaraltlier classil]. In image registration,
some authors used a mixture model in which image differeigee®rated by outliers are represented
by a mixture component?f], [30]. Similar approaches could be used in medical image registr
considering medical lesions as outliefS|[28]. However, the main and important difference with the
model we introduce in this paper is that the mixture modetgppsed above do not use any spatial and
geometric information about the pixel classes but only lpixéependent mixing proportions.

In other approaches, spatial informations derived frommeagation were used to adapt regionally
the similarity criterion describing intensity relatiomg$ [35]-[3€]. Such segmentation-based approaches
require a preliminary segmentation of the images which,iaisly, cannot always be obtained. For
instance, in dynamic contrast-enhanced sequences, tlye isggmentation has to be estimated from the
registered images3f].

Image segmentation has also been combined with atlas-begistration in Bayesian frameworks(],
[41], where mixture models were used to represent pixel intiessof different anatomical structures.
In other works, Markov random fields were employed to descablabel map of pixel classes. The
registration and the segmentation were then computed byMidpsemum A Posteriori (MAP) estima-
tion [42-[44]. In such approaches, one can incorporate prior informa#ibout the lesion shape and
localization. However, the proposed methods used simpdeackerizations of intensity variations.

In this paper, we deal with the issue of registering imagessghintensity relationship is spatially
dependent. We propose a new technique where the registigtisimultaneously combined to a pixel
classification. This classification provides some spatidrimation about intensity relationships. We use
mixture models to take into account complex intensity clesrand Markov random fields to label pixels.

The paper is organized as follows. Section 2 describes #mretical foundation of the proposed new

method. Then, the numerical aspects are discussed in 8&ctla Section 4, experiments are conducted
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both on simulated and on real data to evaluate the methodrpehce. Finally, some conclusions and

possible extensions of the proposed approach are discussleel last section.

Il. THE PROPOSED METHOD
A. The Bayesian framework

Let m andn be two integers, an; = {0,...,m — 1} x {0,...,n — 1} be a discrete grid of size
N = mn. Observed images are real-valued functions definef@nThey can be interpolated on the
continuous domaif2 = [0,m — 1] x [0,n — 1] naturally associated to the grid,;. For convenience,
elements of2,; are ordered and will be denoted for i = 1,--- , N.

The registration of two image$ and J consists in finding a mapping : Q@ — Q for which the
deformed imagd? := I o ¢ of the so-called source imageis as similar as possible to the so-called
target image/.

In a Bayesian framework, the mappingds usually obtained as a MAP estimate (sé€¢ pnd references
therein). Specific to this framework, images and defornmatiare assumed to be some realizations of
random fields indexed ofl; and?, respectively. For each point of Q4, I(z;) and.J(z;) are realizations
of two real-valued random variables and, for each poiof 2, ¢(z) is a realization of a random vector
with values inQ2. The relationships between the intensities of the regsdténages are then statistically
described by a probability distribution of given I, ¢ and a set of parametefs (this conditional
distribution is denoted byr(J | I, ¢;0)). Usually, the variables/(z;) are assumed to be independent

conditionally to the variableg?(z;). Hence 7r(J | I,¢;0) can be written as

w(J | I,;0) Hw () | I9(x:); 6). (1)

Because of noise, and also because it is a very generic glibisgossible to assume that the intensity
differences betweeri(z) andI¢(x) follow a Gaussian distribution with meanand variancer? at each

pixel z € Qg4, leading to the distribution

(J(x) | I°(z);0) =

e (50 - @)~ ) @

with 6 = (u, o). In this definition, it is worth noticing that the meanand the variance? do not depend
on any positionz. Consequently, the intensity relationship between imagepatially homogeneous. Let
us further mention that, similarly to this particular Gamssdistribution, distributions associated to other

usual criteria (e.g. correlation ratio, correlation cagdint, or mutual information) are also homogeneous.
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Besides, a prior probability distribution is set on the miagp¢ in order to favour smooth deformations
as solutions of the registration problem. lget= id + « be written as the sum of the identity mapand
a displacement field,, seen as an element of a Hilbert spa¢esquipped with an inner produet, -).
Let then# be a finite-dimensional approximation subspac&.afhich is spanned by a bads= (i)iey,
with n. € N*. In #, a displacement is uniquely determined by a vector of coefficiethis= (Bi)iey
such thatu = Y, 3; - ¢;. In the following, the deformationg are assumed to be expanded into the
subspace{ and identified with their decomposition coefficieriss We will also use the notatiot®
instead ofl?. Several choices are possible for the bdkis-ourier basis, sine and cosine transform basis
functions, B-splines, piecewise affine or trilinear basisdtions, wavelets (se€ ] for a review), etc.

We consider an inner product ¢4, given bya(u,u) = b” Ab, whereb” is the transpose d, and A
is a symmetric positive-definite matrix. O, we then define a centered multivariate normal distribution

with covariance matrixd—! given by

m(b) = (27) " \/det(A—1)e 2P 4P, ®3)

This prior distribution is used as a regularity term to eoéothe smoothness of the deformatiahs

A usual choice fora(-,-) is the bilinear form

1 & i vi(z)\?
TPRIC b DAL
defined forA > 0 andx > 0, which is an inner product on the Sobolev sp&t2;R?) and is related
to the linearized strain energy of elastic materials[H[50]. We choose here the elastic regularization
without aiming at a specific application, but knowing thastterm enables to deal with many medical
imaging applications. Other regularity terms could bedyedidapted to specific applications. They can be
easily introduced in the proposed model. Other choicesidecthe membrane energyl], the bending
energy pZ], etc. The matrixA can also be estimated from the data using for instance EMitigts
with stochastic approximatiorb§], [54].
In the model we propose, we will use a baBisonstructed using the finite element method (the details
of the construction will be given in Sectidil) and the inner product given by Equatiof).(
The registration problem is defined as the problem of findivggMAP, i.e. maximizing the posterior

distribution(b|1, J; 8) with respect to the coefficients. Using Bayes’ Theorem, this problem can be
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equivalently formulated as finding
b* = arg max,w(J|I,b;0) 7(b). (5)

Applying the —log function to all probability distributions, this maximizah problem can also be

transformed into the problem of minimizing the energy
E(b) = S(I,J,b;6) + H(b), (6)

whereS(I,J,b;0) = —logn(J|I,b;0) and H(b) = —log w(b).

B. The two-class registration model

We now outline our new maodel. It is an extension of the modskdbed in the previous section. The
main feature is the introduction and the estimation of alpiiassification to take into account the spatial
variations of the statistical relationships between therisities ofJ and 1.

1) Intensity relationships:In Equation ), the probability distributionr(.J(x)|I?(x);6) describing
the intensity relationship is spatially homogeneous. W& assume that the pixels of imagkecan be
divided into two classes (labeldgtland 1) where the intensity relationships are different and detiot
respectively byr;(J(x)|IP(x);0;), j € {0,1}. Let alsoL(z) be the probability for a pixet to belong

to the classl. Then, the intensity relationship at pixelis described by the mixture distribution

w(J(@)|I°(x), L(x); ) = mo(J ()| I°(2); 60) (1 — L())
+m(J(2)|I°(«);61) L(z), (7)

wheref = (6o, 61).
Let us denotel; = L(z;) andL = (Ly,---,Ly)T the vector of class probabilities on grid pixels.

Assuming the conditional independence on grid points, weinkihe global conditional distribution

N
w(I°,L30) = [T (mol @)l 1® w)s 0) (1 — L)+
i=1

m(J (@)1 (@):0) L) . (@)

In an application of our model to lesion detection, the dfasgion aims at distinguishing pixels on
a lesion (class 1) from those outside any lesion (class Qohirast-enhanced images, the enhancement
is more important on lesions than it is on normal tissuegliteato higher image differences on lesions.

Assuming that the distributions are Gaussian on both cdasge can define distributionsy and 7, as
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in Equation @) using two different sets of parametefy: = (1, 0¢) for my and 6, = (u1,01) for m,
with p1 > po. Another possibility is, as in robust estimation, to coesidlements of class as outliers
of class0 and put no specific information on classy definingz; as the uniform distribution

by L
7Tl(‘](‘r)’[ (.Z')791)— Ngl7 (9)

where Ny is the number of possible gray-levels &f

Finally, we define a prior distribution on the class niajitself in order to introduce some constraints
on the spatial homogeneity of the pixels of a same class.Hatrgurpose, we equip the gre; with a
neighborhood system (eitherdaor 8 neighborhood system) and assume that the classIma@ Markov
random field on it p5]. We have considered two prior distributions @n The first one is a Gaussian

model, given by

1 N
m(L) = 7 &P <—a1 Z L?
i=1

—ay > (Li — L;)* | . (10)

{i,j=1,+ ,N;wi~z;}
wherex; ~ x; means that:; andx; are neighboring pixels?7 is a normalization constant;; > 0 and

as > 0. The second model, which is a particular case of the Gauss@iel whenL is binary with

range{0, 1}, is the Bernoulli model
1 N
(L) = — €XP (—al z_; L;

+ag > LiLj |, (11)
{Z,_]Zl, ,N;ZE,;NZEJ'}

wherea; > 0 anday > 0. If we let X = 2L — 1, this model is equivalent to the Ising modéld].
In models (0) and (1), the parameter; restricts the amount of pixels of the classwhereas the
parameteky, enforces the spatial homogeneity of the classes.

2) Classes and deformationdn some situations, one must locally adapt the deformatield fio
structures that must be kept rigid, using a tissue-depdrfdeming technique. Otherwise, rigid tissue,
such as bone, could be deformed elastically, growth of tsmumaty be concealed, and contrast-enhanced
structures may be reduced in volunie’]. Such a specificity could be taken into account in our Bayesi
framework by defining a distribution on deformations thatwdodepend on classes: setting distributions

mo(b) andm;(b) respectively for the two classes, we could define a disiobut(b; L) as a mixture of
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the distributionsry(b) andm (b).

However, such an option was not considered in our applicatideformation differences between lesions
and normal tissues are not significant and do not justifyeiasing the complexity of the model. Hence, in
this work, we rather make the assumption that the deformsiémd the classes are independent. Further

assuming that they are both independent from images, we get
w(b,L | I) =m(b) n(L)

3) MAP estimationsin our Bayesian framework, the registration problem cdasis maximizing the
posterior distributionr(b, L|I, J; 0) with respect to the deformatioh and to the class mahp. In this
new formulation, registration and classification are batlegrated in a single maximization problem, and
have to be performed simultaneously.

Using Bayes’ Theorem, it comes that
w(J|I,L,b;0) n(b,L|I)

b,L|I,J;0) =
w(J|I,L,b;0) w(b) m(L)
= 12
mw(J|1;0) (12)
Hence the registration problem can be restated in term&keliibod and prior distributions as
(b,L) = argmax, 1, 7(J|I, L, b; 6) w(b) m(L). (13)

Again, by application of the- log transform to distributions, this maximization problem da trans-

formed into the problem of minimizing the energy
E(b,L)=S5(I,J,b,L;0) + H(b) + R(L), (14)

whereS(I, J,b,L;6) = —logw(b,L|0,I,J), R(L) = —logn(L) and,H (b) = —log w(b) is as defined
in Equation 6).
Besides, when the class maps known (¢ < [0, 1]"), it is also possible to only solve the registration
problem
b = arg max;, 7(J|I, L, b;8) 7 (b). (15)

This leads to a registration with two classes and can be usddrhplate-based segmentation (see Section

IV-B1).
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4) Parameters:The distributions defined above involve several paramelieigur application, we used
the prior deformation distribution defined by Equatiai) &nd set manually the Lame constaatand
from experiments. We also set manually the megrand the variance, of the Gaussian distribution
mo Of the clas9), and the weightsy; and s of the Gaussian or Bernoulli model in Equatiod$)(and
(11). The other parameters, which are the mgarand the variance; of the Gaussian distribution;
on classl, are estimated from the data. We assume thabelongs to an intervalimin,, timaz] @nd oy
to another intervalo,,n, omas] @nd put, as a prior, uniform independent distributiong:pfando; on
these intervals. The parameter veatas decomposed &&= (6, 1), wherefy = (po, 0p) is known and
01 = (u1,01). This paramete#; is then estimated, together with the deformation and thesilaation

by solving the following MAP estimation problem:

(b,L,01) = argmaxy, 1, g, 7(J|I, L, b;00,01) 7(b) w(L) 7 (01). (16)
As before, this is equivalent to the minimization of an eyeof the form
E(b,L,0,)=S(I,J,b,L;0) + H(b) + R(L), a7

under the constraint that; € [tmin, timaz] @NA 01 € [Tmin, Omaz]-

I11. NUMERICAL RESOLUTION

In this section, we present the numerical resolution of tbhmlained registration and classification

problem defined in Equatiori) or equivalently in Equationl(7), using the gradient descent algorithm.

A. Problem discretization

The discretization of the problem is based on the constmaf a finite dimensional basis of defor-
mations using the finite element methoé&d].
First, the domain is partitioned into a set of triangles whose vertices are setadenoted?;, = {e; €
2,1 < i < n.}. Such a partition is obtained by applying a Delaunay tridaiipn to the continuous
domain 2. Then, aP1-Lagrange finite element functio®; is associated to each vertex where ®;
is the only piecewise affine function on the triangulated diomsatisfying®;(e;) = 1 if i = j and0
otherwise. The functio®; is locally supported on triangles of the partition havingas vertex (Figure
1).

Next, we definep! = (®;,0), ¥? = (0, ®;), and the family of functiond3 = {¢)¥ i = 1,....n., k =

1,2}. The family B spans a finite dimensional spaég' that is a subset of the infinite dimensional
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(b)

(@)
Fig. 1. Discretization of the deformations dom&in (a) The mesh, (b) #1-Lagrange finite element functiod; is associated

to a vertexe; (piecewise affine function).

Sobolev spacél! (Q; R?). In H', a displacement, can be written as

Ne

w=S (Bl + 5202 = S8 s, (18)
i=1

i=1
wheret; = ¢} +¢? and 8; = (8}, 8?)T € R%. We denoteb = (3{,57,--- , 8% ,32)T. Then, up to a
constant, the energy of the deformation given by Equati@hsuid @) becomes

1

H(b) = §a(u,u)
1~ o1 S
= 3 Zﬁi A+ 'Z B AiBs, (19)
i=1 1,j=1,i#j
11 12
where 4;; = ’231 ’2]2 are2 x 2-matrices defined by = a(yf,¢7") for k,m = 1,2. Choosing

the elasticity potential in Equatiord); it can be shown that each matrig;; is symmetric and that
A;j = Aj;. Besides, since the functions’ are locally supported on the triangles whose vertices @onta

e;, the matrices4;; are null whenever the vertices ande; are not on a same triangle. Hendé(b)

reduces to
1 Ne T MNe -
= 1,0=1,e;~e;

wheree; ~ e; indicates that; ande; are different vertices of a same triangle.

B. Gradient descent

The energy¢ in Equation (7) is non-linear and non-convex with respecti@ndd. A first approach
to minimize this energy is to approximate the solutions & Euler equations associatedfousing a

gradient descent algorithn® ).
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Let X denote the vector formed by all the variables
X = (b> L7 01)
= (517"'7ﬁn57L17"'7LN7,Uf170-1)

The gradient descent algorithm consists in defining analiiition X(©) of X and iterating the scheme
(t>0)
Xt = x® _ 5,0 -VS(X(t)). (21)

until stabilization;p*) is a vector of the same size &5 and with positive components. In this equation,
VE(.) is the gradient of with respect toX. To compute this gradient, we need the expression of the

partial derivatives of the energy. We have

o€
a5, Kk B E ki3

{i=1,+ ne;ei~er}

N w-—bw,-— xi—bwi—
—Z(p?(‘]( ) ig() w) | UG 2;) m)
1=1

% = 2o L; + 22 Z (Li o Lj)

i Jj=1,-,N,x;~z;

+ mo(J (i) [1P (:); 00) — w1 (J ()| I (24); 61)
m(J () 1P (2); 0) ’

o€ 1
a_ul — _% ;p ( ,“1)
o€ 1
e __%;p < ;) — ) _1>,
o (1 = Ly) wo(J ()| I (2:); 0 )

2 w(J (@)|IP(wi), Liz 0)

L w1 (J ()| I (24); 01)

1 - .
PSP (@), L 0) (22)

The local Weightp{ represents the probability that the pixgl may be considered as an element of the
classj. It combines both a spatial information provided byand an intensity information given by the
probability ratio ofr; over .

Besides, we use the projected gradient algorithi] fo comply with the constraint on the parameter
01 = (p1,07): if ugtﬂ) is larger thanu,,., (respectively smaller thap,,;,), we replace it byuax

(respectivelyu,,;»,) and we apply the same method for.
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C. Simulating elastic deformations

In order to have a validation of the proposed classifyingsteation model, we will need to make
experiments on simulated image pairs (see the experimsetdion). To obtain such pairs, we have to
be able to simulate deformations that are samples from thieapility distribution7(b) = exp(—H (b)).
The aim of this subsection is to explain how these sampleslateaned. We consider dn,, the following
neighborhood system: two different verticesand e; of €2, are neighborse; ~ e;) if they are on a
same triangle. We denote I8 and(C, the sets of cliques of order and 2. From the decomposition
(20), we can write

H(b) = %iﬁ;ﬂAizﬂi + Z B A B - (23)
=1

i7j:178iNej

Sum onC; Sum‘;ncg

So, the elasticity displacemeantis a Gibbs random field and, consequently, a Markov randorm fie]].
We can show that local conditional probability distribuigor(5;|5;,j € N;) are Gaussian distributions
with mean—A;;'W;, whereW; = > i1 i AijBi, and covariance matrix;;*. The mean balances the
displacement induced by neighboring vertices and the malg’l acts as a local filter. The vectdr

is a centered Gaussian Markovian random field. Elastic deftion can then be simulated using the

Cholesky factorization of the covariance matdx ' [60)].

D. Implementation details

For the implementation of the gradient descent algorithra,use the FREEFEM++ softwaré1],
dedicated to the finite element method. For the computdtiorst, we observed that, on images of size
200 x 200 pixels and with500 finite elements, the algorithm approximately takes aboet mmute (the
computations were performed on a core 2 duo 2GH and 2Go RAMegsDr).

In all the experiments, the initialization is always the sala = 0 andu = 0 (i.e. all pixels belong to a
same first class and there is no displacement). In order ®lexate the convergence and the precision of
the technique, we use a multi-grid approach, which consgistgst initializing the deformations with a
coarse approximation using a small number of vertices aed ithcreasing this number when necessary.
For an image of siz€56 x 256, we use four levels of resolution with respectivél2, 302, 452, and
652 vertices. At each resolution, we have made four iteratiodnthe gradient descent to estimate the

coordinate of the displacement at each vertex.
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IV. EXPERIMENTS

In this section, we show several experiments with the digsgi registration model, both on synthetic
and on real data. We compare this model to a classical onallzas¢he sum of squared differences
(SSD) and corresponding to a particular case of the clasgifiegistration model obtained when the
so-called class map is set to be equal to 0 at every pixel. In all the experiments,use a Gaussian
distribution to describe the image intensity dependenay#g on the first class with parameter values

(mean and variance) estimated from an image patch.

A. Model validation

Validation and comparison of medical image registratiggoathms are two important issues/, [63].
The requirements to perform a validation are: the definitbm validation methodology, which should
include the design of validation datasets, the definitiora @orresponding "ground truth”, a validation
protocol and some validation metrics. Now, there is rarélgver a “ground truth” correspondence map
that would enable judging the performance of a non-rigidstegtion algorithm. In our approach, we
will use simulated deformations and images to get a “grounth’t to get an evaluation of registration
and classification algorithms.

Different sub-images (of siz56 x 256 pixels each) were extracted from clinical screen-film mam-
mograms of the MIAS databasé4]. Each image was transformed by a simulated elastic defitmma
and corrupted by Gaussian noise with distributi®it0, 9). Mammographic masses were then simulated
by adding to the deformed and noisy mammograms a Gaussiae maih distribution\'(x1,9) on a
disk-shaped region of radiuB. Figure2 shows a typical mammogram sub-image and its deformation
including an additive mass.

From each mammogram sub-image, we have simulated sevegat tmages by changing parameter
specifications. We thus obtained a database containiGigairs of images by varying lesion location, size
R € {0,5,10,15}, contrasiu; € {5,10,15} and deformation magnitude,,, € {2, 4,6} (this deformation
magnitude is defined ab?2, = + Zf\il | u(z;) ||?). This database also contaii$4 “normal” pairs of
images without simulated mass.

We perform the registration of each pair of the database éth the full classifying model (Equation
(17)) and the SSD model. For the classifying registration, we asGaussian mixture wherg) is a
Gaussian distributionV (0, 9) while the parameter§:,, o1) of ; are all estimated. For the regularization
of the lesion map, we use a Bernoulli model (binary lesion )naph empirical choicesy; = 7 and

a9 = —0.7.
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(a) (b) (©) (d)
Fig. 2. A simulated pair of images: (a) The source image etdrhfrom a real mammogram, (b) The deformed source image,
(c) The target image obtained by adding a Gaussian noisedigthibution V'(1.1,9) on a disk-shaped region of the image (b),

(d) Differences between the source and the target images.

We use two criteria for the evaluation of the registratioheTirst one involves the ground truth and
compares the real displaceménte,) and the estimate@uesim) one. The registration error is defined as

the mean distance between them, counted in pixels:

N
1
ErrL2 = N ; Hureal(xi) - Uestim(xi)‘ |2 (24)

The second criterion is computed as the percentage of rddiifferences between the source and target

images:

VRN ) - (@)
VI (@) — I(2:))?

When the values of the criterioRi f f I'mg are negative, thé2 distance between the registered images

DiffImg=100- | 1

(25)

is higher than the one between unregistered images. Whencibrnputed only over lesion pixels, the
second criterion can also be used for the evaluation of tiectien. Negative values occuring on lesion
regions show that the model preserves and enhances the gliffegences on points of the lesion class
and thus improves lesion detection.

For a given pair of images we compute the valuestof 1.2 on the output of both the classifying
model and the SSD model. We also consider the differenceeofw values thus obtained. The same
computations are performed for the valueddff f I'mg. We show the statistical analysis of the obtained
values by giving confidence intervals for confidence level.6f[65].

Tablesl andll summarize the obtained results, each line correspondiagsgecific value of one of the
parametersi(;, R or D,,); the confidence interval is computed over the pairs of thaliese having this

specific parameter value.
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SSD model Classifying model Difference between both mode
Global Lesion Global Lesion Global Lesion
0.51;0.69 | 0.91;2.56 || 0.47;0.61 | 0.31;1.28 —0.09;0.02 —1.34;0.39
R=5 0.51;0.66 | 0.55;1.70 || 0.45;0.60 | 0.30 ;1.04 —0.01;0.01 —1.03;0.13
10 0.52;0.69 | 0.93;2.56 || 0.45;0.61 | 0.36;1.37 —0.06 ;0.02 —1.73;0.15
15 0.53;0.74 | 0.90;2.69 || 0.44;0.63 | 0.41;1.87 || —0.16 ;0.043 —1.35;0.92
pu1 =10 | 0.46 ;0.62 | 0.74;1.72 || 0.45;0.62 | 0.50 ;1.96 —0.01;0.02 —0.30;0.38
15 0.50 ;0.67 | 0.95;2.41 || 0.45;0.61 | 0.34;1.10 —0.06 ;0.01 —1.35;—-0.26
20 0.50;0.70 | 1.08;2.92 || 0.45;0.60 | 0.42;0.91 —0.13;0.01 —2.09;-0.45
Dy =2 | 0.53;0.59 | 0.92;2.13 || 0.53;0.57 | 0.39;0.80 —0.02;0.00 —1.26 ;0.04
4 0.56 ;0.62 | 0.89;2.32 || 0.57;0.61 | 0.30;1.04 —0.02;0.01 —1.20;0.18
6 0.64 ;1.64 | 0.67;3.58 || 1.31;2.20 | 0.45;3.91 0.39;0.79 —1.38;1.14
TABLE |

A FIRST EVALUATION OF THE REGISTRATION PERFORMANCES OF THESDMODEL AND OF THE CLASSIFYING MODEL
THIS TABLE PRESENTS THE CONFIDENCE INTERVALS OF LEVEQ.6 OF THE MEAN DISTANCE CRITERIONE L2 (EQUATION
(24)) BETWEEN THE REAL AND THE ESTIMATED DEFORMATIONS COMPUTED OVER THE WHOLE IMAGE(COLUMN
“GLOBAL”) OR ONLY ON THE“L ESION’. THE LAST DOUBLE-COLUMN GIVES THE CONFIDENCE INTERVAL OF THE
DIFFERENCE BETWEEN VALUES OF THEY7 L2 CRITERION OBTAINED WITH THE SSDAND CLASSIFYING MODELS. A
NEGATIVE VALUE OF THE DIFFERENCE INDICATES THAT THE CLASSIFING MODEL IS MORE ACCURATE THAN THESSD
ONE.

Columns “global” of Tabld reveal that the accuracy of the classifying model and of {88 $hodel
are about the same when evaluated over whole imagesnside and outside lesions); the differences
between theErrL2 values of both models vary between -0.09 and 0.02 pixels.dvew on columns
“lesion” of Tablel, we observe that SSD registrations are impaired by the pcesef a lesion whereas
those of the classifying model seem to be more robust. The @88el accuracy on lesions is lower
than the global one, and decreases as the lesions becoree darghore constrasted. This is in sharp
contrast with the classifying model whose accuracy on tesis close to the global one and does not
vary significantly according to lesions size and constrast.

Tablell gives another viewpoint on model evaluation, which congdehe previous one. On columns
“global”, we can see that the SSD model reduces slightly nsogrce and target intensity differences
than the classifying one. On columns “lesion”, we furthes@lye that, on lesions, these differences
are more compensated by the SSD model than by the classifyiagContrarily to the SSD model, the
classifying model can detect lesions and preserves theréiftes they cause. With the classifying model,
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SSD model Classifying model || Difference between both models

Global | Lesion || Global Lesion Global Lesion

35;51 | 5; 31 30; 43 | —2; 24. -2 0 —14; —4

R=5 |36;51 | 4:35 || 31;43 | —11;23 | —0.3;0 —10; 0.6
10 39; 55 | 45 32 30 ; 42 2326 —-1;0 —13; —4
15 34:50 | 5;28 || 34;49 | —3,17 -3:0 —15; =7
w1 =10 | 36; 52 | 10; 42 || 31; 43 | —2; 28 -1;0 —9; —1
15 35:51 | 5;32 | 30;43 | —1; 24 -2:0 —16; —7
20 36; 51 | 6527 2843 | =3 17 -3;0 —15; =7
Dp=2130;34 | 5;26 30;34 | —6; 13 —1;0 —14; —4
4 43;49 | 6; 34 42549 | —1; 28 —-1;0 —13; —4

6 48 ;55 | 5; 36 41; 50 | —1; 26 —7; —4 —15; —4

TABLE 1l

A SECOND EVALUATION OF THE REGISTRATION PERFORMANCES OF THESDMODEL AND OF THE CLASSIFYING MODEL
THIS TABLE PRESENTS THE CONFIDENCE INTERVALS OF LEVEQ.6 OF THE MEAN PERCENTAGE OF REDUCED DIFFERENCES
CRITERIONDif fImg (EQUATION (25)) BETWEEN THE SOURCE AND THE TARGET IMAGESCOMPUTED OVER THE WHOLE
IMAGES (COLUMN “GLOBAL”") OR ONLY ON THE “L ESIONS’. THE LAST DOUBLE-COLUMN GIVES THE CONFIDENCE
INTERVAL OF THE DIFFERENCES BETWEEN THE VALUES OF TH®)i f fImg CRITERION OBTAINED WITH THE CLASSIFYING
AND THE SSDMODELS.

lesions get better and better preserved in image diffeeenden they get larger or more contrasted.
Detection evaluation:Lesion detection from bilateral or temporal mammograms learperformed
by thresholding the differences between the registeredy@®nds6]. The classifying model provides a
lesion mapL: whose spatial consistency is ensured by the use of a prior. tdowever, to compare the
detection performances of the SSD model and of the classgifiyiodel depending on registration results,
we threshold the registered image differences obtaineld kaoth models. When comparing the binary
image obtained by thresholding to the ground truth, we caardene for each experiment the number
of false positives ' P), false negativesi{NV), true positivesTP) and true negatives/(V). A graphical
representation of these two indices are obtained as a Red@perating CharacteristiOC) curve 7]
expressing the sensitivityensitivity = 77-1) versus the false positive ratéeci ficity = 7x—7p),
for different values of the thr! eshold. In such a represianathe best possible prediction method would
yield a point in the upper left corner (coordindte 1) of the ROC space) representind)0% sensitivity
(no false negatives) anth0% specificity (no false positives). On Figuz we superimpose th&0C

curves obtained with the two registration models. Figdighows that the classifying registration method
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__SSD ]
-e- Classifying registration |

W oW o oW oy @ oW o2
False positive rate

Fig. 3. ROC curves of the detection results obtained resdgtwith the SSD and classifying models.

improves the detection results by reducing the false pesitite. For instance, for a detection rate of
80% (resp.70%), the false positive rate 8.115% (resp.0.042%) with the SSD model and onl§.064%
(resp.0.018%) with the classifying model.

B. Some other applications of the model

1) Template-based segmentatidmn: the example shown on Figure we apply the classifying model
to contrast-enhanced CT axial images of the thorax. Therasinagent enhances the superior vena cava
(V) and the aorta arch()). First, we manually segment these two regions in the postrast image.
Then, we register the post-contrast image to the pre-cstntrde by using either the SSD model or the
classifying model with the exact class map and a uniformriigion 7;. Registering the post-contrast
image (here taken as the source image) with the pre-coritregje (taken as the target image) also
allows us to transport the segmentation made on the soummgeinto the target image; such a technique
is known as template-based segmentation. The results sbowigure4, illustrate the superiority of the
classifying model which, contrarily to the SSD model, takés account the contrast variations and does
not shrink contrast-enhanced regions. We further quadtifie amount of shrinkage on the enhanced
regions or9 couples of images representing several different caseswv@rage, the amount of shrinkage
was 29.5% for the SSD-based registration and onty35% for the classifying registration.

2) Mammogram registration:On the example shown on Figufe we process a pair of bilateral
mammograms (cas#)1 of the MIAS databasesfl]) which contains a lesion appearing as an asymmetric
density.

We apply the classifying model in the class map estimatiomen@ninimization of Equation1(’)):
the binary class mah is estimated, together with lesion-related parameigrando, of the distribution

1. A Bernoulli prior is used for the definition of the binary les map with heuristic choices; = 7
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(f) (9)

Fig. 4. A comparison of the SSD model and the classifying rhddetemplate-based segmentation of contrast-enhanced

images. For the classifying model, the class map is knownthedlistributionr; is set as a uniform distribution. Image (a)
is the post-contrast image (source image), image (b) is thecgntrast image (target image), and image (c) is the tassc
segmentation of the post-contrast image. Images (d) andré)espectively the registered source image and the tegsp

segmentation obtained by the SSD registration, whereagesé) and (g) are those obtained by the classifying model.

etas = —0.7.

By comparison of images (c) and (i) of Figube we can see that the initial image differences inside
the lesion region are preserved after a classifying registr while those outside are attenuated. In other
words, the classifying model enhances the lesion in imadfereinces. Such a feature is particularly
interesting for lesion detection as it can help reducing nbhenber of false positives. The classifying
model also overcomes a drawback of the usual SSD model whictistto reduce both normal and

pathological asymmetries appearing in image differenae#, can be observed on image (f) of Figre

May 10, 2012 DRAFT



IEEE TRANSACTIONS ON IMAGE PROCESSING, TIP-08569-2012,R1Al 2012 20

(9) (h) (i)

May 10, 2012 DRAFT
Fig. 5. Images (a) and (b) form a bilateral pair of mammogramswving a pathological asymmetry contoured in image (d).

Image (c) is the initial difference between images (a) and Ithage (e) is the deformation of image (a) obtained by th&®SD
registration between images (a) and (b). Image (f) is thierdihce between image (b) and the registered image (e). agte |

row shows the results of the classifvina reaistration ofaes (a) and (b) : imaae (a) is the obtained class rhanimaae (h)
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V. DISCUSSION

In this paper, we have proposed a Bayesian approach to pedonultaneously image registration
and pixel classification.

The proposed technique is well-suited to deal with imagespghat contain two classes of pixels with
different inter-image intensity relationships. We havewh through different experiments that the model
can be applied in many different ways. For instance if theslaap is known, then it can be used for
template-based segmentation. If the full model is usedntesbn of the class map, the registration and
the parameters of the distribution of the outliers), thenah be applied to lesion detection by image
comparison.

Experiments have been conducted on both real and simulatadThey show that in the presence of an
extra-class (e.g. a lesion class in mammograms), the fylagpregistration improves both the registration
and the detection, especially when the deformations ardl.shin@ proposed model is defined using only
two classes but it is straightforward to extend it to an aabjt number of classes. However, the estimation
of the number of classes would then appear as a critical .igshis will be part of some future research
and it will certainly require the use of model selection tages.

The application of the classifying model was illustratedroadical imaging data. But, the proposed
model is very generic and can be adapted to many other sitigatin particular, we believe that the
model could also be helpful for motion estimation. The idtrotion of a second intensity relationship

class in the model would enable to deal with occlusions, Wiaie a major issue of motion estimation.
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