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Abstract. A unified a contrario detection method is proposed to solve three classical problems in clustering
analysis. The first one is to evaluate the validity of a cluster candidate. The second problem is that meaningful
clusters can contain or be contained in other meaningful clusters. A rule is needed to define locally optimal clusters
by inclusion. The third problem is the definition of a correct merging rule between meaningful clusters, permitting
to decide whether they should stay separate or unite. The motivation of this theory is shape recognition. Matching
algorithms usually compute correspondences between more or less local features (called shape elements) between
images to be compared. Each pair of matching shape elements leads to a unique transformation (similarity or affine
map.) The present theory is used to group these shape elements into shapes by detecting clusters in the transformation
space.
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1. Introduction

1.1. Problem Statement

Clustering aims at discovering structure in a point data
set, by dividing it into its “natural” groups. There are

three classical problems related to the construction of
the right clusters. (See Fig. 1.)

1. The first one is to evaluate the validity of a cluster
candidate. In other words, is a group of points really
a cluster, i.e. a group with a large enough density?
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Figure 1. This figure illustrates three aspects of the grouping problem. The figure presents a set of data points in the plane and some test

regions where an exceptional density may be observed, or not. Intuitively, the regions H and I do not contain clusters. So a first question is to

rule out such non meaningful clusters. A second question is the choice of sound candidate regions: for instance, should not R1 be enlarged to

include the point a? As a last question, what is the best description of the observed clusters? The region R is a possible good candidate, but

it also contains the points of regions R1 and R2 which also are sound candidates. Thus, the question arises of whether R should be chosen as

cluster region, rather than the pair (R1, R2).

2. The second problem is that meaningful clusters can
contain or be contained in other meaningful clusters.
A rule is needed to define locally optimal clusters
by inclusion. This rule, however, is not enough to
interpret correctly the data.

3. The third problem is the definition of a correct merg-
ing rule between meaningful clusters, permitting to
decide whether they should stay separate or unit.

A unified a contrario method will be proposed. It con-
sists in detecting regions of the space with an unexpect-
edly high concentration of points, relatively to a statis-
tical background model. In continuation, some com-
plexity issues and heuristics to find sound candidate
clusters will be considered.

This theory is then used to address a shape recog-
nition problem. Given two images, how to anwer the
question “do these two images have shapes in com-
mon?”. This question only makes sense if a set of invari-
ance properties is also given. For instance, it is sound
to assume that the perception of a shape is widely in-
dependent from the viewpoint. Hence, the recognition
procedure should be projective invariant, or, at least for
remote planar shapes, affine invariant. It should also be
quite independent from illumination conditions. And
finally, it should resist to partial occlusions. This last re-
quirement implies that, unless in specific applications,
recognition cannot be the mere research of global tem-
plates. Instead, more simple and local parts of shapes
have to be analyzed and identified in each image of the
considered pair. Such local parts, or shape elements
can be defined in several ways. The representation that
will be used in this paper has been introduced in [30]
(see Section 4.2), but is definitively not the main scope
of the paper. Moreover, the theory that follows can be

applied exactly in the same way to other types of de-
scriptors. The first recognition step is to match similar
shape elements.

Now, recognition is obviously not terminated at this
point, and this is where the results of this paper come
into action. Indeed, the local matching does not de-
tect that two shape elements belong to the same sin-
gle shape. For this purpose, shape elements have to
be grouped together, whenever they form coherent
wholes. It is then natural to define groups, as sets of
shape elements that are transformed from the first im-
age to the second one, by the same transformation. (In
the present setting, a similarity or an affine map.) Thus,
the problem of finding groups of shape elements can
be formulated as the detection of groups of transforma-
tions, i.e. a clustering problem. These groups of shape
elements are more proper to define shapes.

The plan of this paper is as follows. Section 1.2 gives
a short overview of the related problems in clustering
analysis and grouping in shape recognition. Section 2
is the theoretical core of the paper and proposes an an-
swer to the three questions of validity, stopping rule
and merging. In Section 3, this theory is applied to per-
ceptual grouping, illustrated by simple experiments. In
Section 4, the application is to group points that are
geometric transformations, corresponding to matches
between parts of images. Section 5 contains numeri-
cal experiments, showing the validity of the proposed
approach.

1.2. Related Work

The problem of finding groups in a data set is an ac-
tive research field. It is involved in data-mining, pattern
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recognition and pattern classification. The main clus-
tering techniques are presented in [7, 9, 16–18, 20,
34]. All these methods face the three general problems
above. Dubes [8] and Milligan and Cooper [28] pro-
posed solutions to the choice of the number of clusters,
which are related to the stopping rule in hierarchical
methods. Bock [2] and Gordon [11, 12] are particularly
interested in the validity assessment. Their approach is
close to what we call an a contrario method: they define
a background model in which they measure the likeli-
hood of the concentration of points. A uniform model
may not be the most adapted method, and it may be
useful to define a data-dependent background model
as shall be done in the next section. The method of the
present paper is directly inspired by Desolneux et al.’s
method for detecting groups of dots in an image [6].
In this method, a hierarchical classification of the set
of dots is considered, and meaningful clusters are de-
tected as large deviations from a standard Poisson null
model. A maximality criterion was also defined but
had several flaws that are taken in consideration in the
approach proposed in this paper.

Grouping phenomena are also probably essential in
human perception. In vision, the grouping phenomenon
was thoroughly explored by the Gestalt school, from
the founding paper of Wertheimer [36]. In Computer
Vision, the first attempts to model a computational
perceptual organization date back to Marr [26]. More
recently Lowe [25] proposed a detection framework
based on the computation of accidental occurrences.
Even though the relation with perceptual organization
was not highlighted, Computer Vision also used spa-
tial coherence for shape or object detection. One of
the first and best examples is Ballard’s work on the
generalized Hough transform [1]. In his paper, Ballard
proposed a method extending the Hough transform to
any kind of planar shape, not necessarily described by
an analytic formula. Stockman [33] presented another
early work based on the same principle (recognize a
target shape by finding clusters in the transformation
space), where he introduced a coarse to fine technique
allowing to reduce the search complexity. Other voting
schemes, like Geometric Hashing [21, 37], the Align-
ment method [15], or tensor-voting [27], are frequently
used in detection or recognition problems. An advan-
tage of these voting procedures is that they are sys-
tematic, and can in principle be generalized to any
dimension (although the computational burden often
becomes too heavy). However, they do not solve the de-
cision problem. In [13, 14], Grimson and Huttenlocher
presented a study on the likelihood of false peaks in
the Hough parameter space. They proposed a detec-

tion framework where recognition thresholds are de-
rived from a null model (“the conspiracy of random”).
Previous recognition methods generally associated a
single threshold with each target image, independently
of the scene complexity. In contrast to these methods,
the grouping thresholds derived in this paper satisfy
an important property: they are functions of the scene
complexity and of the uncertainty in feature extraction.
The method of the present article shares these funda-
mental ideas with Grimson and Huttenlocher’s work.
The computational swiftness is obtained by a hierar-
chical representation of the transformation points. The
definition of a data-dependent background model is
crucial for avoiding false clusters: Grimson and Hut-
tenlocher’s method assumes that matched features are
uniformly distributed in the image. This assumption is
usually not valid [31]. One of the observations of this
paper is that an empirical distribution can be used to
detect groups in arbitrary data points.

2. Hierarchical Clustering and Validity
Assessment

2.1. A Contrario Cluster Validity

The first contribution is to define a quantitative mea-
sure of validity of a group of points. A group will be
considered as meaningful whenever it is contained in a
region in which only few points are expected if the data
were drawn at random. Hence, a probability model has
to be defined, as well as the precise event that will be
sought.

2.1.1. The Background Model. In all what follows,
E is a given subset of RD , endowed with a probability
measure π (which will be also called background law.)
By definition, for any R ⊂ E , π (R) is the probability
that a random point belongs to R. We do not mention
measurability issues here. They are straightforward in
this context.

The definition of π is problem specific. In general, it
is given a priori, or can be empirically estimated over
the data. (See next section.)

Definition 2.1. A background process is a finite point
process (Xi )i=1,... M in E made of M mutually indepen-
dent variables, identically distributed with law π .

Let us now consider an observed data set of M points
(x1, . . . , xM ) in E M . A subset of the data set will form
a meaningful group if an important part of its points
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belong to a “small” given region, whenever the proba-
bility of this event is small. In other words, it could not
be explained by the background model. Therefore, the
cornerstone of the a contrario method is to contradict
the following assumption:

(A) The observed M-tuple (xi )i∈{1...M} is a realization
of the background process.

Let us remark that the clusters that are sought in this
paper do not have any particular shape: they are merely
a high concentration of points. Techniques aiming at
finding a submanifold of any codimension containing
the data points (up to error measurements) is usually
called dimensionality reduction, and is not the aim of
this work. As a consequence, the set of regions will be
very simple: hyperrectangles with sides parallel to the
axes of coordinates. This choice will prove rich enough
to yield a very robust detection, but still allowing quite
easy computations. Moreover, the background process
will also often assume that all the coordinates are inde-
pendent. In this case, the probability of a rectangle is
a product of one dimensional probabilities. The com-
plexity of computation of the probability of a rectangle
then linearly increases with the dimension space D.
Moreover, while it is impossible to accurately learn em-
pirical probabilities as soon as the dimension is more
than, say, 3, it is easy to compute one dimensional his-
tograms.

However, the theory is quite independent of the
choice of the regions. For the time being, let us sim-
ply assume that R is a set of parts of E , with finite
cardinality #R and such that 0 ∈ R for all R ∈ R.

Another requirement is the knowledge of an agglom-
eration algorithm. This is defined as a function

A : E M → (P(E))P

(x1, . . . , xM ) → A(x1, . . . , xM ) = (G1, . . . , G P )

(2.1)

which to any M-tuple of data points associates a
P-tuple of sets, G1, . . . , G P , such that each Gk is a
part of {x1, . . . , xM}. The algorithm A is designed
from any clustering algorithm and proposes a set of
groups candidates from a set of data points. The num-
ber of group candidates P only depends on the number
of data points M and not on the particular values of
x1, . . . , xM . Actually, some of the groups can even be
empty, so that P is only an a priori upper bound of the
number of group candidates. In this paper, A is cho-
sen as a standard single linkage hierarchical clustering
method, but all the theory below does not depend on
this choice. Remark that knowing A does not solve

the problem of cluster validity. It only aims at select-
ing a few group candidates among the 2M subsets of
{x1, . . . , xM} which is of course an untractable number
in any realistic application. So the question is: among
G1, . . . , G P , are there any valid groups, and how to
define a quantitative measure of validity?

2.1.2. Meaningful Groups. In the following, for k �
M ∈ N and 0 � p � 1, let us denote by

B(M, k, p) =
∑
j�k

(
M

j

)
p j (1 − p)M− j

the tail of the binomial law. Given a background process
X1, . . . X M and a region R of E with probability π (R),
one can interpret B(M, k, π (R)) as the probability that
at least k out of the M points of the process fall into R.
A thorough study of the binomial tail and its use in the
detection of geometric structures can be found in [4].

Definition 2.2. Let G ⊂ {x1, . . . xM} be a subset of
k points out of the M data points. We call number of
false alarms (NFA) of G,

NFAg(G)

≡#R · M · P · min
x j ∈G, R∈R

G⊂x j +R

B(M − 1, k − 1, π (x j + R)).

(2.2)

We say that G is an ε-meaningful group if NFAg(G)<ε.

Let us see how this quantity is computed. Among
all the regions of the type x j + R containing G, cen-
tered at x j ∈ G, with R ∈ R, the one with the smallest
probability is selected. Then, NFAg(G) is, up to a mul-
tiplicative constant, the tail of the binomial law with
parameters M −1, k −1 and π (x j + R). Let us remark
that, since each group contains at most M points, and
there are at most P group candidates, the total number
of possible rectangles is #R · M · P which is exactly the
multiplicative constant in (2.2). This quantity is deter-
ministic. It has of course a probabilistic interpretation
which is as follows.

Proposition 2.1. Let X1, . . . X M be a background
process, and (�1, . . . , �P ) = A(X1, . . . , X M ) the as-
sociated group candidates. Then, the expected number
of ε-meaningful groups is less than ε.

The proof is given in appendix.
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Remark. The key point is that the expectation of the
number of meaningful groups is easily controlled. The
probability distribution of this number would instead
be extremely difficult to compute, since groups may
interact.

Let us interpret Definition 2.2 with Proposition 2.1.
If the data points are random points following the back-
ground process, the NFA of a (random) group � is a
random number proportional to the probability that �

is contained in a region of R centered at a point of �. If
there is such a small region, or if the cardinality of � is
large, this probability is small. In other terms, the NFA
measures how likely it is to observe a random group
in a region, by chance. In the background model, data
points are assumed independent, that is to say the data
has no particular structure. Under this assumption, any
candidate group has no other explanation than chance,
and any detection has to be considered as a false alarm,
hence the denomination. Definition 2.2 and Proposi-
tion 2.1 ensure that there are at most ε detections in the
background model.

Another interpretation can be made in terms of clas-
sical hypothesis testing, in the case of multiple tests.
The most conservative threshold is given by Bonfer-
roni’s method: if at most N tests are to be performed,
requiring a p-value less than ε

N for each test, implies
that there are less than ε positive answers among all
the tests. The definition of the NFA only consists in
finding a suitable set of tests.

Let us summarize: the number of false alarms is a
measure of how likely it is that a group G centered at
a data point, containing at least k − 1 of the other data
points, was generated “by chance”, as a realization of
the background process. The lower NFAg(G), the less
likely the observed cluster in the background process,
and the more meaningful it is. By Proposition 2.1, the
only parameter controlling the detection is ε. This pro-
vides a handy way to control false detections. If, on
the average, one is ready to tolerate one “non relevant
group” among all group candidates, then ε can be sim-
ply set to 1.

The following proposition shows that the influence
of the parameter #R and of the decision parameter ε

on the detection results is very weak.

Proposition 2.1 ([4]). Let R be a region in R and let

k∗(ε) = min{k : #RM P · B(M − 1, k, π (R)) � ε}.

Then

α(M, ε)
√

2π (R)(1 − π (R))

� k∗(ε) − π (R)(M − 1) � α(M, ε)√
2

, (2.3)

where α(M, ε) = √
(M − 1) ln(#RM P/ε).

Notice that k∗(ε) is the minimal number of points in
a ε-meaningful group. By the preceding result, this
decision threshold only has a logarithmic dependance
upon #R and ε.

Figure 2 shows an example of clustering. The data
consists of 950 points uniformly distributed in the unit
square, and 50 points manually added around the po-
sitions (0.4, 0.4) and (0.7, 0.7). The figure shows the
result of a numerical method involving the above NFA.
The background distribution π is taken uniform in
(0, 1)2. Both visible clusters are found and their NFA’s
are respectively 10−7 and 10−8. Such low numbers can
barely be the result of chance. How to obtain exactly
these two clusters and no other larger or smaller ones
which would also be meaningful? This will be the ob-
ject of the next two sections.

2.2. Optimal Merging Criterion

While each meaningful group is relevant by itself, the
whole set of meaningful groups exhibits, in general, a
high redundancy. Indeed, a very meaningful group G
usually remains meaningful when it is slightly enlarged
or shrunk into a group G ′. (See Fig. 1.)

If, e.g. G ⊂ G ′, this question is easily answered by
comparing NFAg(G) and NFAg(G ′). The group with the
smallest number of false alarms must of course be pre-
ferred. Another more subtle question arises when three
or more groups interact. Let G1 and G2 be two groups
and G another group containing G1 ∪G2. We then face
two conflicting interpretations of the data: two clusters
or just one? The merged group G is not necessarily a
better data representation than the two separate clusters
G1 and G2. A first possibility is that G is less mean-
ingful than each one of the merging ones. In such a
case, G1 and G2 should be kept, rather than G. The
situation is less obvious when G is more meaningful
than both G1 and G2. In that case, keeping G1 and G2

apart may still be opportune. So a quantitative merging
criterion is required. We shall first define a number of
false alarms for a pair of groups. This new value will
be compared to the NFA of the merged group. Let us
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Figure 2. Clustering of twice 25 points around (0.4, 0.4) and (0.7, 0.7) surrounded by 950 i.i.d. points, uniformly distributed in the unit square.

The regions of R are rectangles as described in Section 2.3.1. In this example #R = 2500 (50 different sizes in each direction). Exactly two

maximal meaningful clusters are detected. (See Section 2.2 for the definition of maximality.) The NFA of the lower left one is 10−8 while the

upper-right one has a NFA equal to 10−7.

introduce the trinomial coefficient(
M

i, j

)
=

(
M

i

)(
M − i

j

)
.

We note

M(M, k1, k2, π1, π2)

=
M∑

i=k1

M−k1∑
j=k2

(
M

i, j

)
π i

1π
j

2 (1 − π1 − π2)M−i− j . (2.4)

This number can be interpreted as follows. Let R1 and
R2 be two disjoint regions of E and π1 = π (R1), π2 =
π (R2) their probabilities. ThenM(M, k1, k2, π1, π2) is
the probability that at least k1 among the M , and then at
least k2 points among the remaining M − k1, belong to
R1 and R2 respectively. Thus, this probability measures
how exceptional a pair of concentrated clusters can be
in the background model.

As for meaningful groups, a NFA for pairs of groups
is to be defined. It is assumed that a set of P pairs of
group candidates are obtained by an operator A2

A2 : E M → (P(E) × P(E))P

(x1, . . . , xM ) → A2(x1, . . . , xM )

= ((
G1

1, G2
1

)
, . . . ,

(
G1

P , G2
P

))
, (2.5)

where it is assumed that Gk
i ⊂ {x1, . . . xM}, for k =

1, 2 and 1 � i � P . Actually, the number of candidate
pairs P does not need to equal the number of candidate
groups. However, since some of the groups may be
empty, this does not make any difference.

Definition 2.3. Consider two candidate groups of data
points (G1 and G2). Let (z1, z2) ∈ G1 ×G2 be two data
points, and R1 and R2 in R. Let us denote by

• k1 (resp. k2) the cardinality of G1\(z2 + R2) (resp.
G2\(z1 + R1)), i.e. the number of points of G1 (resp.
G2) that are not in z2 + R2 (resp. z1 + R1).

• π1 = π ((z1 + R1)\(z2 + R2)) and π2 = π ((z2 +
R2)\(z1 + R1)).

Let us define the number of false alarms of the pair
(G1, G2) by

NFAgg(G1, G2)

= M3 · P · (#R)2 min
(z1,z2)∈G1×G2,

R1,R2∈R
G1⊂z1+R1,G2⊂z2+R2

M(M − 2, k1 − 1,

k2 − 1, π1, π2). (2.6)

We say that a pair of groups (G1, G2) is ε-meaningful
if NFAgg(G1, G2) < ε.

Let us sum up how to compute this quantity: choose a
region centered at one point of G1 (resp. G2) and con-
taining G1 (resp. G2). Those two regions may inter-
sect, so remove their intersection and the points it may
contain. Then, k1 and k2 points are left in each group,
and the trinomial tail can be computed. Now, take the
minimal value, by varying the regions and their center.
Again, this is a deterministic quantity that only has a
probabilistic interpretation once the background model
has been introduced.
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Proposition 2.3. Let (X1, . . . , X M ) be a back-
ground process. Let ((�1

1, �
2
1), . . . , (�1

P , �2
P )) =

A2(X1, . . . , X M ), the P candidate pairs. Then, the
number of ε-meaningful pairs of regions among them
is less than ε.

See Appendix 6 for the proof.

The NFA of a pair (�1, �2) measures how (un)likely
it is to observe a large concentration of points in both
of its elements. Removing the intersection is a mere
technicality so that the probability of this event is the
tail of the trinomial law. An alternate definition that
keeps the points in the intersection has also been con-
sidered, leading to equivalent experimental results. (It
turns out that the most meaningful groups usually be-
long to disjoint rectangles.) What really matters is that
the expected number of meaningful groups in the back-
ground model (false alarms) is under control.

This proposition leads to the following heuristic.
Two measures of meaningfulness are available: the
NFA of group and the NFA of a pair of groups. Since
the number of ε-meaningful groups or pairs of groups
is about ε in the background model, we consider that
they have the same order of magnitude and they can be
compared to define a merging criterion.

Definition 2.4 (Merging condition). Let G1 and G2

be two groups and G containing G1 ∪ G2. We say that
G is indivisible relatively to G1 and G2 if

NFAg(G) � NFAgg(G1, G2). (2.7)

Equation (2.7) represents a crucial test for the co-
herence of a cluster region. If it is not fulfilled, G will
not be considered as a valid group, as it can be divided
into a more meaningful pair of groups.

2.3. Computational Issues

2.3.1. The Choice of Test Regions. What is the right
set of test regions R? All quantities previously defined
can be theoretically computed, but complexity depends
on R. The choice of this paper is the following. For
some reasonably fixed a > 0, r > 1 and n ∈ N, let
us consider all hyperrectangles whose edge lengths be-
long to the set {a, ar, ar2, . . . arn}. This allows one
to consider a tractable number of test regions with very
different sizes and shapes. The choice of the hyper-
rectangles is particularly opportune when the proba-
bility distribution π , defined on a hyperrectangle E of

RD , is a tensor product of one-dimensional densities
π1, . . . πD . Indeed, the probability of a rectangle is the
product of independent marginal probabilities. Hence,
the algorithmic complexity is a linear function of the
dimensionality.

2.3.2. Agglomeration Algorithms. In this paper, the
algorithms A and A2 are actually derived from a single
algorithm. Indeed, a hierarchical single linkage algo-
rithm is used. It provides a binary tree. Each level of
the tree is a partition of the data set, and each node
is a group candidate. Non leaf nodes are the union of
their exactly two children. This tree is sometimes called
dendrogram [17]. Hence, the total number of non leaf
nodes in the tree is P = M − 1, which is also the
number of pairs.

Many of the most common aggregation procedures
proceed by a recursive binary merging procedure.
Thus, they directly yield binary trees. In such meth-
ods, the initial set of nodes is the set of data single-
tons, {x1}, . . . {xM}. It is assumed that between two
data points xi and x j , a dissimilarity measure d(xi , x j )
is given. (It does not need to be a distance.) At each
stage of the construction, the two closest nodes are
united to form their parent node. The inter-cluster dis-
tance must be chosen ad hoc. In the case of sparse data,
one can take the minimal distance d(xi , x j ) where xi

belongs to the first cluster and x j to the second one.
The nodes of the tree are all merged parts at all levels
and the daughters of a node are the two parts it was
merged from. Pairs of sibling nodes are the candidate
pairs, whose NFA is computed.

Let it be clear why such a construction can become
necessary. The set of all possible partitions of a data
point set is huge. A tree structure permits to reduce
the exploration to the search of an optimal subtree of
the initial tree structure. This reduction makes sense
if the set of nodes of the initial tree structure contains
roughly all groups of interest. The choices of the right
metric on the data point set and of the right inter-cluster
distances must be carefully specified for the problem
of interest.

Given a dendrogram of the data point set, the validity
of each node is computed as in Definition 2.2.

Grouping algorithm
For each node G (candidate group) with cardinality k
in the clustering tree or dendrogram,

1. find the smallest region x + R, with x ∈ G and
R ∈ R centered at x , and containing the other data
points of the node.
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Figure 3. Indivisibility prevents collateral elimination. Each subfigure shows a configuration of points, and a piece of the corresponding

dendrogram, with the selection of maximal meaningful groups, depicted in grey. The numbers in each node corresponds to − log10(NFAg)

of its associated cluster, so that the cluster is meaningful when this number is large. The number placed between two nodes is the NFAgg of

the corresponding pair. Left: original configuration. Middle: the node selected by taking only the most meaningful group in each branch. The

left-most group G1 is eliminated. It is, however, very meaningful since NFAg(G1) = 10−18. Right: by combining indivisibility and maximality

criteria, both clusters G1 and G2 are selected.

2. Compute the NFA of G as the minimum of M(M −
1)·#R·B(M −1, k−1, π (x + R)) when x describes
all G and R is any element of R.

2.3.3. Indivisibility and Maximality. We are now
faced with Questions 2 and 3 mentioned at the begin-
ning of the present article: we can get many meaningful
clusters by the preceding method. Their NFA is known.
One can also compute the NFA of a pair of clusters, and
compare it roughly to the NFA of their union. The next
definition proposes a way to select the right clusters,
by using the cluster dendrogram.

Definition 2.5 (Maximal ε-meaningful group). A
node G is maximal ε-meaningful if and only if

1. NFAg(G) � ε,
2. G is indivisible with respect to any pair of sibling

descendents,
3. for all indivisible descendent G ′, NFAg(G ′) �

NFAg(G),

4. for all indivisible ascendent G ′, either NFAg(G ′) >

NFAg(G) or there exists an indivisible descendent
G ′′ of G ′ such that NFAg(G ′′) < NFAg(G ′).

Condition 4 implies that G can be abandoned for a
larger group only if this group has not been beaten by
one of its descendents. Imposing conditions 3 and 4
ensures that two different maximal meaningful groups
are disjoint.

Let us illustrate the critical importance of the merg-
ing condition with two simple examples. Figure 3
shows a configuration of 100 points, distributed on
[0, 1]2, and naturally grouped in two clusters G1 and
G2, for a background model which is uniform in [0, 1]2.
In the hierarchical structure, G1 and G2 are the chil-
dren of G = G1 ∪ G2. All three nodes are obviously
meaningful, since their NFAg is much lower than 1.
Their NFAg also is lower than the NFAg of the other
groups in the dendrogram. It has been checked that for
this particular configuration,

NFAg(G2) < NFAg(G) < NFAg(G1).



A Unified Framework for Detecting Groups and Application to Shape Recognition 99

Figure 4. Indivisibility prevents faulty union. Each sub-figure shows a configuration of points, and a piece of the corresponding dendrogram,

with the selection of maximal meaningful groups, depicted in grey. The number in each node corresponds to the NFAg of its associated cluster.

The number between two nodes is the NFAgg of the corresponding pair. Left: original configuration. Middle: the node selected if one only checks

maximality by inclusion and not indivisibility. The largest group G has the lowest NFAg and would be the only one kept. Note that the optimal

region is not symmetric, since it must be centered on a datapoint. Right: selected nodes obtained by combining the indivisibility and maximality

criteria. Since NFAgg(G1, G2) = 10−140 < 10−127 = NFAg(G), the pair (G1, G2) is preferred to G.

It is clear that G1 represents an informative part of the
data that should be kept. This will be the case. Notice
that G2 is more meaningful than G and is contained
in G. Thus, G would be eliminated if only the most
meaningful groups by inclusion were kept. On the other
hand, G is more meaningful than G1, so that G1 is not
a local maximum of meaningfulness, with respect to
inclusion. So, without the notion of indivisibility and
maximality, trouble would arise: G would eliminate G1

and G2 would eliminate G. One would get the solution
indicated in the middle column of Fig. 3. In fact, G is
not indivisible since it is less meaningful than the pair
(G1, G2). Thus, the result of the grouping procedure
yields, in accordance with the rule of Definition 2.5,
the pair (G1, G2).

In [6], the above mentioned maximality definition
was proposed: it consists of taking the lowest NFA
in all the branches of the tree. As has been just seen,
this definition is not suitable here. By this definition,
G2 would have been considered as the only maximal
meaningful cluster of the tree.

Figure 4 illustrates another situation where the indi-
visibility check yields the intuitively right solution. In
this example, the union G of two clusters G1 and G2

is more meaningful than each separate cluster. With-
out the indivisibility requirement, G would be the only
maximal meaningful group. This would have been co-
herent, had G1 and G2 been intricate enough. In the
presented case, the indivisibility condition yields two
clusters G1 and G2, since NFAgg(G1, G2) < NFAg(G).

3. Experimental Validation: Object Grouping
Based on Elementary Features

Grouping phenomena are essential in human percep-
tion, since they are responsible for the organization of
information. In vision, grouping has been especially
studied by Gestalt psychologists like Wertheimer [36].
The aim of these experiments is to extract the groups
of objects in an image, that share some elementary
geometrical properties. The objects boundaries are ex-
tracted as some contrasted level lines in the image,
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Figure 5. An image of a scanned drawing of 71 segments.

called meaningful level lines (see [5] for a full descrip-
tion of this extraction process). Once these objects are
detected, say O1, . . . OM , we can compute for each of
them a list of D features (grey level, position, orien-
tation, etc . . . ). If k objects among M have one or
several features in common, we wonder if it is hap-
pening by chance or if it is enough to group them.
Each data point is a point in a bounded subset of RD

and the method described above is applied. (Actually,
some coordinates, as angles, belong to the unit cir-
cle, since periodicity must be taken into account. This
can be done all the same.) In all the experiments, the
number of rectangle sizes in each direction is 50. Thus
#R = 50D . Let us also give a few words on the dissim-
ilarity measures in this section. Up to an affine change
of variables, all observations are assumed to belong to
the interval (0, 1) (possibly with periodic boundaries).
The Euclidean metric is then used as a dissimilarity
measure.

Figure 6. Grouping with respect to orientation: there are 8 maximal meaningful groups. NFAg range is between 10−1 and 10−5. The central

group does not contain all the vertical segments, because their orientation are actually slightly different. Hence, the maximal group containing

these vertical segments does not include all the central objects. This means that orientation alone is not sufficient to detect this group. On the

contrary, it allows to detect good groups, but their position is not coherent enough to make them conspicuous.

3.1. Dots in Noise

The first experiment is Fig. 2, which contains two
groups of 25 points in addition to 950 i.i.d uniformly
in the unit square. These points are grouped with re-
spect to their x and y coordinates in the square, so that
D = 2. In the background model, x and y are assumed
independent. Two groups and two groups only are de-
tected with very good NFAg (less than 10−7).

3.2. Segments

In the second example, groups are perceived as a re-
sult of the collaboration between two different features.
Figure 5 shows 71 straight segments with different ori-
entations, almost uniformly distributed in position. The
position of the barycenter and the orientation of the
principal axis of the strokes are computed. As expected,
no meaningful cluster is detected in the space of 2D po-
sition coordinates of the barycenters.

If orientation is chosen as the only feature (D = 1), 8
maximal meaningful groups are detected, correspond-
ing to the most represented orientations, see Fig. 6.
None of these clusters exhibits a very low NFAg . Only
one of those groups is conspicuous (the central one),
but orientation is obviously not the only factor. Note
that this group does not contain all the central segments.
Indeed, their orientations slightly differ, and the group
of 11 segments is not maximal. All the other groups
are actually not perceived, because they are masked by
the clutter made of all the other objects. However, one
cannot object that they have a coherent direction.
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Figure 7. Grouping in the space (x-coordinate, orientation). There are two maximal meaningful groups. This time, the whole central group is

detected (NFAg = 10−1.5), but there is still another group (which is a part of the 7th group in the orientation grouping (see Fig. 6)). However, its

NFAg = 0.3, which means that it is hardly meaningful. This group is not perceived because it is masked by all the other segments. If grouping

is done with respect to full 2D-position and orientation, only the central group is detected with NFAg = 10−3.4.

Figure 8. An image of DNA and its 80 maximal meaningful level lines [5].

Now, let us see what happens when consi-
dering two features (D = 2, #R = 2500). In the space
(x-coordinate, orientation), two maximal meaningful
clusters are found (Fig. 7). As expected, the most mean-
ingful is the group G of 11 central vertical segments. Its
NFAg is equal to 10−1.5, which is not that low. The sec-
ond one is correct, but hardly meaningful NFAg = 0.3.
In the space (y-coordinate, orientation), the central
group G is splitted into two maximal meaningful clus-
ters. They correspond to the two rows of segments com-
posing G. The role of the merging criterion is decisive
here. In the space (y-coordinate, orientation), the com-
bination of the maximality and the merging criterion
yields that it is more meaningful to observe at the same
time the two rows of segments than the whole G. This
is coherent with visual perception, since we actually
see two lines of segments here. On the contrary, in the
(x-coordinate, orientation) space, the merging criterion
indicates that observing G is more meaningful than ob-
serving simultaneously its children in the dendrogram.

This decision is still conform with observation: no par-
ticular group within G can be distinguished with re-
gards to the x-coordinate. The same group is obtained
in the space (x-coordinate, y-coordinate, orientation),
with a lower NFAg = 10−3.4.

3.3. DNA Image

The 80 objects in Fig. 8 are more complex, in the
sense that more features are needed in order to rep-
resent them (diameter, elongation, orientation, etc.). It
is clear that a projection on a single feature is not re-
ally enough to differentiate the objects. Globally, we
see three groups of objects: the DNA marks, which
share the same form, size and orientation; the dig-
its, all on the same line, almost of the same size;
finally the elements of the ruler, also on the same
line and of similar diameters. The position appears
to be decisive in the perceptive formation of these
groups.
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Figure 9. Grouping with respect to diameter and y coordinate. Six groups are detected, 4 of which are rows of DNA marks. The last two ones

correspond to the ruler. − log10(NFAg) range from 2.6 to 7.6 for the DNA. The last two groups are larger and are obviously more meaningful:

− log10(NFAg) = 43 and 54.

Figure 10. Grouping with respect to orientation, elongation, diameter, and a convexity coefficient. The DNA marks are the most meaningful

group NFAg = 10−10, but the 1 and 2’s also form groups, with NFAg close to 1.

In the space (diameter, y-coordinate), 6 maximal
meaningful groups are detected (Fig. 9). Four of them
correspond to the lines of DNA marks (from left to
right and top-down), − log10(NFAg) = 2.6, 7.6, 6.4,
5.6. The group of digits contains 23 objects (a group
of two digits sometimes contains three objects: the two
digits and a level line surrounding both of them) and
− log10(NFAg) = 43. The last group, composed of the
vertical graduation of the ruler contains 31 objects and
is even more meaningful, − log10(NFAg) = 54.

Now, let us give up considering the position infor-
mation. Do we still see the DNA marks as a group? By
taking several other features into account (see Fig. 10),

the DNA marks form an isolated and very meaning-
ful group: the combination of features (orientation, di-
ameter, elongation, convexity coefficient) reveals the
DNA marks as a very good maximal meaningful clus-
ter (NFAg = 10−10). However, to our surprise, two
other groups are also detected (though not very mean-
ingful since their NFAg is about 10−1): the 1’s and the
2’s of the ruler. Let us detail how π , the law of the
background model was estimated on the data itself: the
marginal distribution of each characteristic is approx-
imated by the empirical histogram. Then all the char-
acteristics are assumed to be independent. Let us point
out that the obtained distribution is not uniform at all.
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Figure 11. “Guernica” experiment. Original images and maximal meaningful level lines [5]. All these level lines are encoded into normalized

affine invariant shape elements [30], based on robust directions as bitangent and flat parts. Top: target image, bottom: scene image.

4. Grouping Spatially Coherent Matches for
Planar Shape Recognition

4.1. Why Spatial Coherence Detection?

Looking at Fig. 11, everybody can obviously recognize
on the bottom left image a detail of Picasso’s painting
Guernica shown on the top left image. However, the
painting is incomplete and partially occluded in the
bottom image. It is also deformed by the perspective
view. Moreover, the compression rates are also differ-
ent. Recognizing shapes which are observed from dif-
ferent viewpoints and are partially occluded requires
shape descriptors to be discriminative enough, local or
semi-local, and invariant to subgroups of the projec-
tive group [23, 24, 32]. Shape descriptors having this
properties will be called shape elements in the sequel.

Assume now that instances of a query shape are
present in a scene, and that a method to identify sim-
ilar shape elements is available. It will certainly pro-
vide several correct pairings, but also some false ones;
indeed, since shape elements only provide local infor-
mation, two different objects having similar parts may
present some shape elements that match. Thus, recog-
nition requires finding a consistent set of pairings, that
is, a set of pairings in a particular geometrical config-
uration.

In this framework, one possible strategy consists in
associating with each pairing between shape elements
the underlying transformation, and then detecting sets
of pairings for which the underlying transformations
are “close” in a certain sense.

4.2. Matching Shape Elements

For the sake of completeness, we briefly review the
main steps of the shape elements extraction and match-
ing algorithms described in [30] and that feed the
grouping procedure described below. However, let us
point out that the grouping procedure is applied inde-
pendently from this particular procedure. A first ob-
servation is that the contours of objects in grey level
images very well coincide, at least locally, with pieces
of level lines (or isophotes). The converse is not always
true: indeed, level lines provide a complete representa-
tion of a grey level image [29], and there are many of
them in textures. Thus, a first step is to select a small
subset of all the level lines of an image. In [5], an a
contrario method is proposed, and the selected level
lines are called meaningful boundaries. It allows to se-
lect about 1% of the level lines of an image, without
perceptual loss of shape content. These level lines are
simple curves that are closed or meet the image border
at their endpoints.
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Shape recognition should be robust to partial occlu-
sion. Hence, meaningful boundaries should be cut in
smaller pieces, called shape elements that are to be rec-
ognized. Since geometric invariance is also required,
the encoding of shape elements also has to be invari-
ant. In [23, 30], an affine invariant encoding method is
proposed. Let us remark that, in some cases, a similar-
ity invariant method may be accurate enough. Along
each meaningful line, local affine invariant frames are
computed, based on affine invariant robust directions,
as bitangent lines. Each local frame uniquely defines a
system of coordinates. The coordinates of the points of
a curve in this system of coordinates are affine invari-
ant. In other terms, two curves differing from an affine
transformation define different local frames. However,
when described in their respective system of coordi-
nates, they are located at the same position. Hence they
define a piece of normalized curve, an affine invariant
shape element. A single meaningful boundary usually
contains several shape elements.

Now, given two images and the sets of their shape el-
ements, how to find shape elements in common? Since
shape elements are normalized, this recognition is nat-
urally affine invariant. In [30], an a contrario dedicated
method is proposed to match shape elements. A number
of false alarms of a match is defined, and the matches
with a low number of false alarms are kept.

Figure 12 displays the shape elements common to the
two images of Fig.11. Since no restriction is made on
the affine distortion, a lot of normalized convex shape
elements look quite the same. A unique affine trans-
formation corresponds to each match between shape
elements.

Let I and I ′ be two images, referred to as the target
image and the scene image. For each match between a
shape elementS in I and a shape elementS ′ in I ′, a ge-
ometric transformation (a similarity or an affine trans-

Figure 12. “Guernica” experiment: affine invariant meaningful matches [30]. Since all parallelograms differ from an affine transformation

(idem for triangles or ellipses), there are many casual matches.

form) can be computed. In what follows, the param-
eters involved in these transformations are described,
as well as the way they can be estimated, both for the
similarity and the affine transformation cases.

The objective of this part is twofold: first, to prove
that shape elements corresponding to a single shape
can be accurately grouped together. Second, that this
grouping procedure is robust enough to discard all false
matches. The group NFAs’ are usually very small. This
makes the detection very reliable.

The overall strategy is as follows. In Section 4.3, the
parameterization of similarities or general affine trans-
formations is described. Section 4.4 applies the general
clustering ideas presented in Section 2, first by defining
a dissimilarity measure between transformations, then
by defining a suitable background model on the sets of
transformations.

Let us remark that any representation that allows to
match local features with a given group of invariance
can be used as the input of the grouping procedure.
Instead of matching level lines, we also tested Lowe’s
SIFT descriptors [24], which are similarity invariant.
The results are equivalent for images differing by a sim-
ilarity transformation. For general rigid deformation,
the local matching should be at least affine invariant.

4.3. Describing Transformations

4.3.1. The Similarity Case. Let S and S ′ be two
matching shape elements. Recall that a shape element
is a normalized piece of level line described in a local
frame. (See Fig. 13.) A similarity invariant frame is
completely determined by two points, or equivalently
a point and a vector. This last representation will be
chosen. A local frame is then given by a couple (p, v)
where p gives the origin of the frame and v gives its



A Unified Framework for Detecting Groups and Application to Shape Recognition 105

Figure 13. Two pieces of level lines and their corresponding local similarity frames. The similarity T maps R1 into R′
1 and R2 into R′

2.

Equivalently the local frame, (R1, R2) may be represented by (p, v) = ( R1+R2
2 , R2 − R1).

scale and orientation. Let us assume that S is related
to (p, v) and S ′ to (p′, v′). Since S and S ′ match, they
differ by a similarity transformation. Now, there ex-
ists a unique similarity mapping the local frame (p, v)
onto (p′, v′). By using complex numbers notations, this
similarity can be uniquely expressed as

∀z ∈ C, T(z) = az + b, with a = v′

v

and b = p′ − ap, (4.1)

with (a, b) ∈ C2. The transformation T is uniquely
determined by the 4-tuple

T = (Re(b), I m(b), arg a, |a|),

and T and T will be identified.

4.3.2. The Affine Transformation Case. Let us now
consider the case of affine invariant normalization.
Three non-aligned points are now necessary to define a
local frame. Affine normalization of a piece of curve is
performed by mapping these three points {R1, R2, R3}
onto the triplet {(0, 0), (1, 0), (0, 1)}. Given another
triplet {R′

1, R′
2, R′

3} of non aligned points, there is
a unique affine transform mapping {R1, R2, R3} on
{R′

1, R′
2, R′

3}, again denoted by T. There exists a unique
2 × 2 matrix M and a unique (tx , ty) ∈ R2 such that

T(x, y) = M

(
x
y

)
+

(
tx

ty

)
Calculating M boils down to the solution of a 2 × 2
linear system. By the Q R decomposition [10], M can

be written

M =
(
cos θ − sin θ

sin θ cos θ

)(
1 ϕ

0 1

)(
sx 0
0 sy

)
. (4.2)

This decomposition is unique and completely deter-
mines (θ, ϕ, sx , sy) in [0, 2π )×R×R+×R+. The trans-
formation parameters T = (θ, ϕ, sx , sy, tx , ty) are de-
termined by elementary algebraic calculations. Again,
the vector T characterizes the transformation T.

Without risk of ambiguity, one can adopt the same
notation for similarities or affine transformations. In
addition, since T characterizes T, both of them can be
identified. Thus we write, for X ∈ R2, T (X ) instead of
T(X ).

Figure 14 shows three 2-D projections of the trans-
formation points Tk corresponding to the “Guernica”
affine invariant meaningful matches of Fig. 12.

4.4. Meaningful Clusters of Transformations

The problem of planar shape detection is by now re-
duced to a clustering problem in the transformation
space. According to Section 2, it is necessary to define

1. a dissimilarity measure between points in the trans-
formation space,

2. a probability on the space of transformations,
3. a grouping strategy.

4.4.1. A Dissimilarity Measure Between Transforma-

tions. Defining a distance between transformations
is not trivial, for two reasons. First, the magnitudes
of the parameters of a transformation are not directly
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Figure 14. “Guernica experiment: Each point represents a transformation associated with an affine invariant meaningful match, described by

6 parameters. Each figure represents a two-dimensional projection of the points, respectively tx vs. ty (translation coordinates), θ (rotation) vs.

ϕ (shear), and ln(sx ) vs. ln(sy ) (zooms in the x and y) directions. The noise is mainly due to global shape elements that are very much alike up

to affine transformations, and which do not belong to the same real shape. The main cluster is also spread because of the effect of perspective.

comparable. This problem is not specific to transfor-
mation clustering but general to clustering of any kind
of data. Second, our representation of similarities or
affine transformations does not behave well in a vector
space. A sound distance is not necessarily derived from
a norm.

Definition 4.1 (Similarity case). Let (P1, Q1) (resp.
(P ′

1, Q′
1)) be the points determining the local frame

of S1 in image I (resp. S ′
1 in image I ′). Let T1 the

unique similarity determined by (P1, Q1) and (P ′
1, Q′

1).
In the same way, let T2 be the similarity determined
from a match between the shape elements with frames
(P2, Q2) and (P ′

2, Q′
2) in I and I ′. We call dissimilarity

measure between T1 and T2,

dS(T1, T2) = max{‖T1(Pi ) − T2(Pi )‖,
‖T1(Qi ) − T2(Qi )‖, i ∈ {1, 2}}. (4.3)

Let us remark that this dissimilarity not only depends
on the transformation themselves, but also on the loca-
tion and size of the shape elements in the image.

For completeness, let us define a dissimilarity be-
tween affine transforms.

Definition 4.2 (Affine case). Let T1 (resp. T2) be an
affine transform determined by two shape elements
(S1,S ′

1) (resp. (S2,S ′
2)) matching from I to I ′. Let also

(P1, Q1, R1) and (P ′
1, Q′

1, R′
1) (resp. (P2, Q2, R2) and

(P ′
2, Q′

2, R′
2)) the points determining the local frame of

S1 and S ′
1 (resp. S2 and S ′

2). We set

dA(T1, T2) = max{‖T1(Pi ) − T2(Pi )‖, ‖T1(Qi ) − T2(Qi )‖,
‖T1(Ri ) − T2(Ri )‖, i ∈ {1, 2, 3}}. (4.4)

4.4.2. Background Model: The Similarity Case. In
order to apply the detection framework of Section 2,
a background law is first needed. A data point here is
a similarity transformation represented by a pair of
complex numbers (a, b) ∈ C2. The purpose of this
section is to devise a sound background law π on the
set of similarity transformations. To this aim, recall
that (a, b) is determined by two local frames in the
images to be matched, respectively (p, v) and (p′, v′).
Let us now assume that these observations are the
realization of a random variable (P, V, P ′, V ′) ∈ C4.
It is natural to assume that the position, the size and
the orientation of an object are independent. This
is certainly sound, up to some border effects. In
addition, two images which do not contain common
shapes also can be assumed independent. This leads
us to the following independence assumption for the
background model.

(A’) Consider a random model image I and a random
scene image I ′. Then the random variables P, |V |,
arg V , P ′, |V ′|, arg V ′ associated with matches
between both images are mutually independent.

The marginal laws of the six previous random vari-
ables can easily be learned from the two images. Hence,
the law of (P, V, P ′, V ′) is assumed to be known.
By (4.1), such a 4-tuple uniquely defines a random
similarity pattern denoted by (A, B), where A rep-
resents the rotation and zoom, and B the translation.
The background law π is nothing but the distribution
of (A, B). The expression of (A, B) as a function of
(P, V, P ′, V ′) is explicit and given by

(A, B) : (P, V, P ′, V ′) �→
(

V ′

V
, P ′ − V ′

V
P

)
.
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The background law π is the image of the law
(P, V, P ′, V ′) by this application. It is also clear that A
and B are not independent. Nevertheless, by definition
of the conditional law,

dπ (a, b) = dπ B(b |A = a) dπ A(a), (4.5)

where π A is the marginal of A and π B( · |A = a) is the
law of B knowing A = a. Since |A| = |V ′|/|V | and
arg A = arg V ′−arg V mod (2π ), these two variables
are independent under Assumption (A’). Thus, the dis-
tribution π A can easily be computed. Moreover, it turns
out that A is independent from P and P ′. Hence, the
law of B = P ′ − AP , conditionally to A = a is the
law of P ′ − a P , which can also be easily computed
under (A’). The background law π follows from (4.5).

In practice, the computation of π between two images
is as follows:

1. Compute all the shape elements of model and target
images.

2. Compute the empirical laws of P, V, P ′, V ′ giv-
ing the position, the scale and the orientation of
the local frames related to shape elements in the
two images. Under the independence assumption
(A’), this yields the law of the background model
(P, V, P ′, V ′).

3. Under the same assumption, compute the empirical
laws of |A| = |V ′|

|V | and arg A = arg V ′ − arg V
mod (2π ).

4. For each value a of A with non null frequency, com-
pute the empirical distribution of P ′ − a P .

The probability of a region R is then given by approx-
imating the integral

π (R) =
∫

R
dπ B(b|A = a) dπ A(a).

A few words about the estimation of the background
model: one would expect arg A to be uniformly dis-
tributed in [−π, π ), and this belief was experimentally
confirmed, although the horizontal and vertical direc-
tions may sometimes be privileged. (See Fig. 16 and
experiments.) The distribution of the zoom factor |A|
is instead far from being uniform and even showing
a constant shape in the different experiments we have
made. There is no way to figure out a realistic a priori
distribution for |A|, or for B given A. The background
model distributions must be learned from the scene and
target images.

Remark . The ideas presented here also hold for the
affine transformation clustering. For this case, θ , ϕ,
sx and sy are considered to be mutually independent.
Their distributions can be learned empirically, as well
as the joint probability of (tx , ty) given (θ, ϕ, sx , sy).
This construction, experimentally satisfying though it
is (see the experiments), has no solid theoretical justi-
fication. The problem of finding the right independent
marginal variables in the affine case is left open.

4.4.3. Grouping Strategy. There are several methods
to build a binary tree from a dataset and a dissimilar-
ity measure. In this paper, the minimal spanning tree
is used. Its construction uses a classical single linkage
algorithm working as follows. The dissimilarity d be-
tween two datapoints is extended to any pair of disjoint
sets of datapoints A and B by setting

d(A, B) = min
(a,b)∈(A,B)

d(a, b).

A binary tree is constructed by the following iterative
process: each datapoint is taken as a leaf-node. Then
merge the closest pair of nodes into a single node. Re-
peat this until all nodes have been merged in the whole
dataset. By replacing the “min” by a “max” in the above
formula, a maximal spanning tree is obtained instead.
Choosing one tree or the other may be very applica-
tion dependent but none is universally better than the
other [17].

5. Experimental Results

The consistency of the previous definitions is now
empirically checked. All the experiments will be per-
formed with a pair of images. It is worth summarizing
the steps leading to a complete experimental setting for
shape recognition.

1. Extraction of all the images level lines. An effi-
cient algorithm due to Monasse and Guichard is
used [29]. There are typically 105 level lines in a
512 × 512 image.

2. Selection of the most meaningful level lines [3, 5].
This step can be viewed as a compression of the
shape information of the image. Only a small set of
level lines (between 100 and 1000) is selected by
this fully automatic procedure.

3. Encoding of shape elements: robust directions (bi-
tangent or flat parts) are computed on the level lines.
Based on all those directions, local frames are com-
puted, and pieces of level lines are described in
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normalized frames, typically a few thousands per
image [22, 30].

4. The method of [30] is then applied and yields a set
of M pairs of matching shape elements, one in the
target image and one in the scene image. A funda-
mental hypothesis for the a contrario detection of
groups is that, under the background model, trans-
formation points are mutually independent. In order
to comply with this hypothesis, a greedy algorithm
that eliminates matched shape elements which share
a large piece of curve with other pairs of matching
shape elements is applied.

5. A background model π on the set of similarities or
on the set of affine transforms E is built according
to Section 4.4.2.

6. The transforms T1, . . . TM associated with the
matching pairs form a point data set in E . From
this set, a clustering tree is built according to the
dissimilarity measures of Definitions 4.1 or 4.2.

7. Maximal meaningful groups are computed by Def-
inition 2.5.

The final outcome of the shape identification method
of this paper is, for each pair of images, a set of maxi-
mal meaningful clusters. Each cluster is likely to corre-
spond to an identified shape. One can display for each
cluster its associated shape elements. If the grouping is
correct, this set of shape elements must correspond to a
matching shape in both the target image and the scene
image. In practice, the identified shapes have dramat-
ically low NFA’s. Thus, they yield an overwhelming
certainty about identification. This certainty is, how-
ever, not fully unambiguous because of the Strobe ef-
fect. Indeed, shapes often have self-similar parts: win-
dows, or rows of windows in a building are a good ex-
ample. Other examples are given by symmetries. For
instance, the letter N is self-similar by a π rotation.

Figure 15. “Guernica” experiment: a single maximal meaningful group was detected. Zoom on the matches of the group for the target image

(left) and the scene image (right). The group is composed by 117 good matches, and its − log10(NFAg) is 196.23.

In these cases, two or more very meaningful groups
can be found, each one corresponding to a shape self-
similarity. Such self-similarities can, however, easily
be anticipated by a previous comparison of the target
image with itself. This comparison can be performed
by the above algorithm. The main group will then cor-
respond to the global match of the shape with itself and
the other groups to Strobe effects between parts of the
shape.

Some experiments are displayed both in the simi-
larity invariant case, and affine invariant case. In the-
ory, affine invariance is always better. First because
it is a better approximation of projective transforma-
tion. Second because the probability of regions are
usually smaller, because they are the product of 6
marginal probabilities instead of 4 in the similarity
invariant case. In practice, affine invariant encoding
is more demanding, and there are usually less affine
invariant shape elements in an image than similar-
ity invariant shape elements. Therefore groups usu-
ally contain less points in the affine invariant setting,
which counterbalances the smaller probabilities of the
regions.

5.1. A Single Group

Figure 15 depicts the maximal meaningful groups for
the “Guernica” experiment. There is one single maxi-
mal meaningful group, with − log10(NFAg) = 196.23.
Hence grouping gives a dramatic confidence in de-
tections, while all the false matches are eliminated.
Figure 16 shows the learned distribution of the zoom
factors in the x and y directions as well as the shear
and rotation angle. The latter is not perfectly uniform in
this case, because the vertical and horizontal directions
are privileged in these geometrical images. Figure 17
shows the meaningful cluster.
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Figure 16. Empirical histograms for affine invariant matching for the experiment of Fig. 11. On the first row, the empirical zoom factors in

the x and y direction (logscale), which are image dependent. On the second row, the distribution of the shear and the rotation angle. The shear

is basically uniform, but the rotation exhibits some peaks around − π
2 and π

2 because of the numerous horizontal and vertical lines in the image.

Figure 17. “Guernica experiment: data points of Fig. 14, where the points corresponding to the only affine invariant group are represented

with larger dots. The boundaries of the corresponding hyperrectangle are drawn.

5.2. Two Different Groups

The similarity invariant procedure is applied in the
same way to the images of Fig. 18. Two maximal mean-
ingful groups are detected: the faces and the title. The
corresponding points in the similarity space are dis-
played on Fig. 19. The two groups with their different
translation and their different scaling are clearly visible
this time.

The indivisibility criterion (2.4) decides that two
separate groups (the actors’ faces on the one hand and

the word “Casablanca” on the other hand) are a bet-
ter representation than a single large group containing
both groups. Indeed, while the large group in Fig. 20
has a lower NFAg than one of its children (10−7), it is
not indivisible. Indeed, the NFAg of its two children are
10−7.6 and 10−6.6. The largest group is not indivisible,
and thus cannot be maximal.

The examination of the transformation histograms
(Fig. 21) shows that the rotation angle is nearly uni-
formly distributed. The zooming factor, on the other
hand, does not have an intuitive distribution. The
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Figure 18. “Casablanca” experiment: there are exactly two maximal meaningful groups, corresponding to the faces and the title. The relative

scale of the images presented above is the same as the original one. One should note that the faces and the title actually lie in different relative

positions and scales.

translation has to be learned conditionnally to the ro-
tation and the zoom. The last two plots are the two-
dimensional distribution of the translation, conditioned
by the rotation and zoom of the two detected maximal
meaningful groups. As can be seen, these distributions
are not simple and cannot be deduced from one another
by a single scaling.

5.3. Detecting Multiple Groups

The next example illustrates the performance of the
proposed methodology in detecting multiple groups

in an image. Two images containing multiple occur-
rences of parts of the Coca-Cola logo are compared
(Fig. 22). Figure 23 shows the affine invariant mean-
ingful matches. Five groups are detected. The corre-
sponding shape elements are displayed for each group
in Figs. 24 and 25. The NFAg of maximal meaningful
groups are reported in Table 1. The three first groups are
very meaningful, while the two other NFAg are much
closer to 1: about 10−4.

Maximal meaningful groups can be used for registra-
tion. Since a group contains several points (i.e. several
affine transforms), a standard least squares procedure
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Figure 19. Casablanca experiment. Meaningful clusters in the similarity space. Left: projection in the translation dimensions. Right: projection

on the rotation and zoom (log scale) axes. In this case, two clusters are clearly visible. Their position but also their scale is different.

Figure 20. “Casablanca” experiment. Meaningful group corresponding to the merging of groups in Fig. 18. This group contains 23 meaningful

matches, and its − log10(NFAg) is 7.0. It is more meaningful than the faces group, but it is not maximal. Note the “Strobe” effect of the lower

part of “cASablanca” in the first image that matches with “casABlanca” in the second one.

Table 1. “Coca-Cola” experiment: NFAg for the

maximal meaningful groups in Figs. 24 and 25.

Group nb. 1 2 3 4 5

nb. of matches 15 7 5 6 4

− log10(NFAg) 20.6 16.7 5.8 4.0 3.0

allows to compute the best planar projective transform
describing the group. As can be seen on the left parts
of Figs. 26 and 27, this registration is very accurate
since no blur is visible when the two registered images

are superposed. Another way to check the accuracy of
the registration is to find all the pieces of level lines in
common in the two images, as made as follows. The
two images are first registered. All pieces of meaning-
ful level lines with a length l are parameterized by their
arc-length. If two pieces C1 and C2, belonging to the
first and second image satisfy |C1(s) − C2(s)| < δ for
all s ∈ (0, l) then, keep C1 and C2. In the experiments,
l = 40 and δ = 4. All these pieces of level lines that
are close to each other are plotted on the right part of
Figs. 26 and 27.
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Figure 21. Empirical histograms for similarity invariant matching for the experiment of Fig. 18. On the first row, the log-empirical zoom

factor ln(|a|) and the rotation angle arg a. This last one is nearly uniform in this case. On the bottom row, the distribution of the translation

vector, conditioned by two different values of the couple (ln(|a|), arg a). These values correspond to the two maximal groups that are depicted

on Fig. 18. Since the scales are different, so are the distributions.

6. Conclusion

This paper presents a general setting of detection and
selection of groups in a collection of data points. The
meaningful groups are those that cannot be generated
by chance. As such, they can be defined as large devi-
ations from an independence hypothesis of the points
they contain. This allows defining a measure of mean-
ingfulness, the number of false alarms. Among all the
meaningful groups, only those which cannot be split
into two smaller groups are relevant. The same kind of
methodology can lead to the selection of these max-
imal meaningful groups. This framework is then ap-
plied to the grouping of transformations resulting from
a preliminary local matching algorithm. The method
is less sensitive to quantization than Hough Trans-
form type algorithms, because the size of the region
leading to the most meaningful event is automatically
chosen. Let us point out that the present method in-
tends to detect clusters with “no shape”. In particular,
it needs further work to deal with clusters with holes,

or nested. Because of the preliminary clustering step,
it also much depends on the used distance, but there
does not seem to be a choice which is completely in-
dependent of the application. However, the NFA cal-
culation should be adapted to more general types of
groups.

The method could be used to find out the char-
acteristics that are really relevant to form perceptual
groups in a set of objects. How to select the charac-
teristics to obtain the most meaningful groups? An-
other application where these clustering procedures
are proposed is the analysis of visual motion [38],
where the purpose is to detect spatio-temporal co-
herence. Elementary types of motions (ideal zoom-
ing, pure rotation, rectilinear motion) are parameter-
ized, and local observations are grouped with respect
to these criterions. Works in progress are exposed in
[35].

Perceptual grouping laws works recursively, as ob-
served by Gestaltists. Applying the same kind of it-
eration, with the presented algorithm would lead to a
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Figure 22. “Coca-Cola” experiment: original images and maximal meaningful level lines. Top: images, bottom: meaningful level lines [5].

Figure 23. “Coca-Cola” experiment. Meaningful matches. Number of tests: 1.57 107 (591 shape elements in the target image, 26, 621 in

the scene image). Since the matching algorithm works on parts of the images (which is mandatory if robustness to occlusion and ability to

detect multiple groups are required), casual matches are inevitable. The grouping phase attempts to build a more global context, and to discard

those false matches. Contrary to Hough Transform clustering, the method proposed in this paper does not depend on bins quantization and has

automatic detection thresholds.
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Figure 24. “Coca-Cola” experiment: first three maximal meaningful groups (among 5). Their − log10(N F A) are respectively 20.6, 16.7, 5.8,

showing that they are indeed very meaningful.

further automatic analysis of images. However, some
questions need to be examined. First, after an iteration,
meaningful groups with respect to some properties are
detected. Each one of these groups have a NFA. Is
it possible to integrate this NFA as a weight in fur-
ther grouping iterations? Another major problem is the
masking phenomenon: grouping laws often compete
with one another. As a consequence, a structure that
is conspicuous out of any context may not be visible
when surrounded by other percepts. The simplest case
of masking is corruption by noise, which is more or less
handled by the method, because the background model
precisely measures how much the observation differs
from a noise model. A much more complicated case is
masking by another organized structure. In this case,
how can NFA be used to decide which structure has to

be kept? The influence of the choice of the dissimilar-
ity should also be studied further. Other questions are
about the limitations of the method, due to high dimen-
sionality. How hard is it to design a background model
in high dimension? How sensitive are the results with
respect to this model? This needs to be investigated
further.

Appendix. A. Proofs

A.1. Proof of Proposition 2.1

A careful notation is needed. Let us fix 1 � j � M
and R ∈ R. We note:

• X = (X1, . . . X M ), the background process,
• x = (x1, . . . xm) a set of M points in E ,
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Figure 25. “Coca-Cola” experiment: maximal meaningful groups (last two among five). Their − log10(N F A) are respectively 4.0 and 3.0.

• X j = (X1, . . . X M ) with X j omitted in the list,
• x j = (x1, . . . xM ) with x j omitted in the list,
• dπ j (x j ) = dπ (x1) . . . dπ (xM ) with dπ (x j ) omitted

in the product,
• Pr j the marginal of Pr with respect to X j ,
• K (X j , X j , R), number of points in the list X j be-

longing to X j + R.

Lemma A.1. Let us fix x j ∈ E. Consider a random
process X1, . . . , X M . Then

Pr j

(
B(M − 1, K (X j , x j , R), π (x j + R))<

ε

#R · M

)
� ε

#R · M
.

Proof: The cumulative distribution of the random
variable K (X j , x j , R) is k → B(M −1, k, π (x j + R)).
If X has a cumulative distribution F , it is a classical
result that the probability that F(X ) < t is less or
equal than t . The results follows.

Proof of Proposition 2.1: Let us note

• For 1 � i � P , the Bernoulli variable

Yi =
{

1 if �i is ε-meaningful,

0 otherwise.

• S = ∑
i Yi the number of ε-meaningful groups.

Let us also denote by Ki the (random) cardinality of
�i and ε = ε

M P#R .

Pr(Yi = 1)

= Pr

(
min

X j ∈�i , R∈R
�i ⊂X j +R

B(M − 1, Ki − 1, π (X j + R)) < ε

)
.

(A.1)

= Pr(∃ j, R s.t. X j ∈ �i , �i ⊂ X j + R,

B(M − 1, Ki − 1, π (X j + R)) < ε) (A.2)

� Pr(∃ j, R s.t. B(M − 1, K (X j , X j , R),

π (X j + R)) < ε) (A.3)

�
∑

1� j�M
R∈R

Pr(B(M − 1, K (X j , X j , R),

π (X j + R)) < ε). (A.4)
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Figure 26. “Coca-Cola” experiment: registration with respect to

the meaningful groups. Because there are several affine matches per

group, one can compute the best planar projective mapping by a

standard least squares method. The projective transformation is used

to superpose the two images (on the left). On the right side, pieces of

level lines that are close to each other in the registered images (see

text).

The first inequality results from �i ⊂ X j + R ⇒
Ki − 1 � K (X j , X j , R) and the monotonicity of the
map k �→ B(M − 1, k, p). Now, Lemma A.1 cannot
be directly applied. Indeed, the considered region is
centered at a random point X j and thus has a random
probability. However, by Fubini Theorem

Pr(B(M − 1, K (X j , X j , R), π (X j + R)) < ε),

=
∫

dπ (x j ) Pr j (B(M − 1, K (X j , x j , R),

π (x j + R)) < ε),

�
∫

dπ (x j )ε by Lemma A.1,

= ε.

Thus

P(Yi = 1) � M#Rε = ε

P
.

Figure 27. “Coca-Cola” experiment: maximal meaningful groups

(last two among five). Their − log10(NFA) is respectively 3.39 and

4.60. Both of them correspond to a Strobe effect, since the lower part

of “oca” is identical to the lower part of “ola”. Left: the registered

images. Right: registered pieces of level lines.

Finally,

E(S) =
P∑

i=1

E(Yi ) �
P∑

i=1

ε

P
= ε,

where E is the expectation under the background
model.

A.2 Proof of Proposition 2.3

Let 1 � i �= j � M . We note

• X = (X1, . . . X M ), the background process,
• x = (x1, . . . xM ) a set of M dots in E ,
• Xi j = (X1, . . . X M ) with Xi , X j omitted in the list,
• xi j = (x1, . . . xM ) with xi , x j omitted in the list,
• Xi j = (X1, . . . X M ) with Xi and X j replaced by xi

and x j ,
• dπ i j (xi j ) = dπ (x1) . . . dπ (xM ) with dπ (xi ) and

dπ (x j ) omitted in the product,
• Pri j the marginal of Pr with respect to xi j ,
• K (X, i, j, Ri , R j ) = the number of points among

Xi j that are in Xi + Ri but not in X j + R j , i.e.
belonging to (Xi + Ri ) \ (X j + R j ),

• Ki = K (X, i, j, Ri , R j ), K j = K (X, j, i, R j , Ri ),
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• K̃i = K (Xi j , i, j, Ri , R j ), K̃ j = K (Xi j , j, i, R j ,

Ri ),
• ki = K (xi , i, j, Ri , R j ), k j = K (x j , j, i, R j , Ri ),
• πi = π ((xi + Ri ) \ (x j + R j )), π j = π ((x j + R j ) \

(xi + Ri )),
• 
i = π ((Xi + Ri ) \ (X j + R j )), 
 j = π ((X j +

R j ) \ (Xi + Ri )),
• ε = 2ε

M3 P(#R)2 .

Lemma A.2. For every xi , x j ∈ E,

Pr i j
[
M(M − 2, K̃i , K̃ j , πi , π j ) < ε

]
< (M − 1)ε.

Proof: The proof extends the arguments used for
Lemma A.1 to the case of two variables. Remark that
this proof is true for discrete variables, since it uses
the fact that K̃ j and K̃i can only take M − 1 different
values. Indeed,

Pr i j
[
M(M − 2, K̃i , K̃ j , πi , π j ) < ε

]
=

∑
(ki ,k j )|M(M−2,ki ,k j ,πi ,π j )<ε

Pr i j (K̃i = ki , K̃ j = k j )

=
∑

(ki ,k j )|M(M−2,ki ,k j ,πi ,π j )<ε(
M − 2

ki , k j

)
π

ki
i π

k j

j (1 − πi − π j )
M−2−ki −k j .

Let

ki (ε, k j )

= inf{0 � k � M − 2|M(M − 2, k, k j , πi , π j ) < ε},

with the useful conventionsM(M −2, k, k j , πi , π j ) =
0 and

(M−2
k,k j

) = 0 if k � M − 1 − k j . The map k →
M(M − 2, k, k j , πi , π j ) being monotone,

M(M − 2, k, k j , πi , π j ) < ε ⇔ k � ki (ε, k j ).

(A.5)

Summarizing and using the definition of ki (ε, k j ),

Pr i j
[
M(M − 2, K̃i , K̃ j , πi , π j ) < ε

]
=

M−2∑
k j =0

M−2∑
k=ki (ε,k j )

(
M − 2

k, k j

)
π k

i π
k j

j (1 − πi − π j )
M−2−k−k j

�
M−2∑
k j =0

M−2∑
k=ki (ε,k j )

M−2−k∑
l=k j

(
M − 2

k, l

)
π k

i π l
j (1 − πi − π j )

M−2−k−l

=
M−2∑
k j =0

M(M − 2, ki (ε, k j ), k j , πi , π j )

< (M − 1)ε.

Proof: Let us note for k = 1, . . . , P

• The Bernoulli variable

Yk =
{

1 if
(
�1

k , �
2
k

)
is ε-meaningful,

0 otherwise.

• S = ∑P
k=1 Yk the number of ε-meaningful pairs of

regions.

Let us fix k. Let Xi and X j be two points in the process,
belonging to �1

k and �2
k . Let Ri and R j be two regions

in R, such that �1
k ⊂ Xi + Ri and �2

k ⊂ X j + R j .
Let also K̂i the number of points of �1

k that are not in
X j + R j and K̂ j the number of points of �2

k that are
not in Xi + Ri . Remark that with the notations above,
K̂i � Ki and K̂ j � K j . Then,

Pr(Yk = 1)

= Pr(∃i, j, Ri , R j s.t. Xi ∈ �1
k , X j ∈�2

k ,

�1
k ⊂ Xi + Ri , �

2
k ⊂ X j + R j ,

M(M − 2, K̂i − 1, K̂ j − 1, 
i , 
 j ) < ε).

� Pr(∃i, j, Ri , R j s.t.

M(M − 2, Ki , K j , 
i , 
 j ) < ε)

�
M∑

i, j=1

∑
Ri ,R j

Pr(M(M − 2, Ki , K j , 
i , 
 j ) < ε)

The first inequality results from K̂i − 1 � Ki and
K̂ j − 1 � K j and the monotonicity of the map
(k, l) �→ M(M − 2, k, l, p, q) with respect to each
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of its variables. By Fubini theorem,

Pr(M(M − 2, Ki , K j , 
i , 
 j ) < ε)

=
∫

E2

dπ (xi )dπ (x j )

×
∫

E M−2

1l{M(M−2,ki ,k j ,πi ,π j )<ε}dπ i j (xi j )

=
∫

E2

dπ (xi )dπ (x j )

× Pr i j (M(M − 2, K̃i , K̃ j , πi , π j ) < ε)

< (M − 1)ε,

where Lemma 6.2 has been used in the last inequality.
Finally,

E(S) =
P∑

k=1

E(Yk)

<

P∑
k=1

(M − 1)P M(#R)2ε

� ε.
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3. F. Cao, P. Musé, and F. Sur, “Extracting meaningful curves from

images,” Journal of Mathematical Imaging and Vision, Vol. 22,

No. 2–3, pp. 159–181, 2005.

4. A. Desolneux, L. Moisan, and J.-M. Morel, “Meaningful align-

ments,” International Journal of Computer Vision, Vol. 40, No.

1, pp. 7–23, 2000.

5. A. Desolneux, L. Moisan, and J.-M. Morel, “Edge detection

by Helmholtz principle,” Journal of Mathematical Imaging and
Vision, Vol. 14, No. 3, pp. 271–284, 2001.

6. A. Desolneux, L. Moisan, and J.-M. Morel, “A grouping princi-

ple and four applications,” IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, Vol. 25, No. 4, pp. 508–513, 2003.

7. P.A. Devijver, and J. Kittler, Pattern Recognition—A Statistical
Approach, Prentice Hall, 1982.

8. R.C. “Dubes, How many clusters are best?—an experiment,”

Pattern Recognition, Vol. 20, No. 6, pp. 645–663, 1987.

9. R.O. Duda, and P.E. Hart, Pattern Classification and Scene Anal-
ysis, John Wiley and Sons, 1973.

10. G.H. Golub, and C.F. Van Loan, Matrix Computations, Johns

Hopkins University Press, 1989.

11. A.D. Gordon, “Null models in cluster validation,” in From Data
to Knowledge: Theoretical and Practical Aspects of Classifica-
tion, Data Analysis, and Knowledge Organization, W. Gaul and

D. Pfeifer (Eds.), Springer Verlag, 1996, pp. 32–44.

12. A.D. Gordon, Classification. Monographs on Statistics and Ap-

plied Probability 82, Chapman & Hall, 1999.

13. W.E.L. Grimson and D.P. Huttenlocher, “On the sensitivity of

the Hough transform for object recognition,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, Vol. 12, No. 3,

pp. 255–274, 1990.

14. W.E.L. Grimson and D.P. Huttenlocher, “On the verification

of hypothesized matches in model-based recognition,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, Vol.

13, No. 12, pp. 1201–1213, 1991.

15. D.P. Huttenlocher, and S. Ullman, “Object recognition using

alignment,” In International Conference of Computer Vision,

London, UK, 1987, pp. 267–291.

16. A.K. Jain, M.N. Murty, and P.J. Flynn, “Data clustering: A re-

view,” ACM Computing Surveys, Vol. 31, No. 3, pp. 264–323,

1999.

17. A.K. Jain and R.C. Dubes, Algorithms for Clustering Data, Ad-

vanced Reference Series, Prentice-Hall, 1988.

18. A.K. Jain, R.P.W. Duin, and M. Jiachang, “Statistical pattern

recognition: A review,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, Vol. 22, No. 1, pp. 4–36, 2000.

19. K. Joag-Dev and F. Proschan, “Negative association of random

variables, with applications,” Annals of Statistics, Vol. 11, No. 1,

pp. 286–295, 1983.

20. L. Kaufman and P. J. Rousseeuw, Finding Groups in Data:
An Introduction to Cluster Analysis, John Wiley and Sons,

1990.

21. Y. Lamdan, and H.J. Wolfson, “Geometric hashing: a general

and efficient model-based recognition scheme,” in Proceedings
of IEEE International Conference on Computer Vision, Tampa,

Florida, USA, 1988, pp. 238–249.

22. J.L. Lisani, Shape Based Automatic Images Comparison. PhD
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