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Abstract—Even though vanishing points in digital images result from parallel lines

in the 3D scene, most of the proposed detection algorithms are forced to rely

heavily either on additional properties (like orthogonality or coplanarity and equal

distance) of the underlying 3D lines, or on knowledge of the camera calibration

parameters, in order to avoid spurious responses. In this work, we develop a new

detection algorithm that relies on the Helmoltz principle recently proposed for

computer vision by Desolneux et al. [8], [9], both at the line detection and line

grouping stages. This leads to a vanishing point detector with a low false alarms

rate and a high precision level, which does not rely on any a priori information on

the image or calibration parameters, and does not require any parameter tuning.

Index Terms—Vanishing point, perceptual grouping, Gestalt theory, Helhmotz

principle.

æ

1 INTRODUCTION

SETS of parallel lines in 3D space are projected into a 2D image
obtained with a pinhole camera to a set of concurrent lines. The
meeting point of these lines in the image plane is called a
vanishing point, and may eventually belong to the line at infinity
of the image plane in the case of 3D lines parallel to the image
plane. Even though concurrence in the image plane does not
necessarily imply parallelism in 3D (it only implies that all 3D
lines intersect the line defined by the focal point and the
vanishing point), the counterexamples for this implication are
extremely rare in real images, and the problem of finding
parallel lines in 3D is reduced to finding vanishing points in the
image plane.

The usefulness of precise measurements of vanishing points,

among other geometric primitives, was demonstrated, for instance,

in [5] in the framework of forensic applications of single view

metrology. Since the seminal work of Barnard [21], however,

automated computational methods for vanishing points detection

in digital images have been based on some variation of the Hough

transform in a conveniently quantized Gaussian sphere. Several

refinements of these techniques followed, but most recent works

suggest that this simple technique often leads to spurious

vanishing points [20]. In order to eliminate these false alarms,

most authors considered some kind of joint Gestalt, which adds

some other property to 3D parallelism like coplanarity and equal

distance between lines [19] or orthogonality between the three

main 3D directions [14], [20], [16]. In addition, knowledge of the

intrinsic camera calibration parameters is commonly assumed [14],

[4] by these methods, or they are designed mostly for omnidirec-

tional images [4]. To the best of our knowledge, the question of

reliably determining whether an image actually contains some

vanishing points and its number has not yet been addressed

systematically.

In this work, we show that 3D parallelism alone is a significant

Gestalt in many images of man-made environments and that it can

be reliably detected with a low number of false alarms and a high

precision level, without using any secondary property or any

a priori information on the image or calibration parameters, and

without any parameter-tuning. We do not claim that secondary

properties (like equal distance, or orthogonality) should not be

used in any circumstance; this can be useful for some applications,

and our technique may be extended to these situations. But, in

many applications, a pure vanishing point detector is more useful

since it can be used to determine some calibration parameters of

the camera (which are needed in other approaches relying on

orthogonality for instance). The key improvements with respect to

previous vanishing point detectors are the following:

1. The primitives that are accumulated in (an equivalent of)
the Gaussian sphere are line segments, which are
themselves detected with an almost-zero false alarms rate,
by a refinement of the method presented in [7].

2. Our criterion to determine a meaningful vanishing point
from a large vote in the Gaussian sphere is deduced from
the Helmholtz principle [9], thus producing a low number
of false alarms, without need for threshold-tuning.

3. Finally, a Minimum Description Length (MDL) criterion is
used to further restrict the number of spurious vanishing
points and to deal with the masking phenomenon.

This article should be considered as a more extended applica-

tion of the general technique presented in [9] (in this same special

issue), where the Helmholtz principle is explained in more detail.

The refinements that are needed for the alignment detection

algorithm are described in [2] and in [1, chapter 4]. These changes

aim mainly at eliminating multiple responses for a single line

segment, and at eliminating the precision parameter to obtain a

fully parameterless method.

2 DETECTION OF VANISHING POINTS

As in the case of alignments, we shall define a meaningful

vanishing point in terms of the Helmholtz principle. Our objects

in this case will be all the meaningful segments obtained by the

method we described in the previous section. The common feature

we shall seek for among these segments is a common point v1 met

by all their supporting lines. Due to measurement errors, these lines

will rather meet within a more or less small subset V of the image

plane, which we shall call vanishing region. To consider all

possibilities, we need to consider a finite family of such regions

fVjgMj¼1, such that it covers the whole (infinite) image plane,

i.e.,
SM
i¼j Vj ¼ IP2. In [22], an intelligent such partition is proposed,

whereas most works use a partition of the image plane such that the

projection of each vanishing region on the Gaussian sphere has a

quasi-constant area [21], [14], [20], [16]. This partition has the

advantage that it assigns the same precision to all 3D orientations,

but it requires knowledge of the internal camera calibration

parameters. However, a practical application of the Helmholtz

principle (Sections 2.1 and 2.2) leads to a different partition of the

image plane into vanishing regions (to be introduced in Section 2.3),

which shares some qualitative properties with the common

Gaussian sphere partition.

2.1 Meaningful Vanishing Regions

Assume that a total of N segments were detected, with supporting
lines l1; l2; . . . ; lN . We consider the event that at least k among these
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N lines meet a given vanishing region Vj. Under the assumption

that all lines are independent with the same distribution, the

probability of such an event is Bðpj;N; kÞ, where pj is the

probability that a line meets the vanishing region Vj. Moreover,

since the M regions Vj are chosen to sample all possible vanishing

regions, we make NT ¼M such tests. Thus, the number of false

alarms for a vanishing region Vj can be defined as:

NFAðVjÞ :¼MBðpj;N; kÞ; ð1Þ

and, as usual, the vanishing region is "-meaningful if k is

sufficiently large to have NFAðVjÞ � ".
In order to actually find the value of NFA and the minimal

value kðj; "Þ of k such that Vj becomes meaningful, we need to

know the probabilities pj. This is the subject of the next section.

2.2 Probability of a Line Meeting a
Vanishing Region

Gratefully, this geometric probability problem has been very

elegantly solved in [18]: Choose a suitable measure for a random

line G on the plane (it is shown that there is only one way to do this,

up to a multiplicative constant, in a rotationally and translation-

invariant way) and consider two convex sets K1 and K2 of the

plane. Then, the measure of all lines meeting both sets is:

�½G \K1 6¼ ; and G \K2 6¼ ;�

¼
L2 ¼ PerðK2Þ if K1 � K2

Li ÿ Le if K1 \K2 ¼ ;;

� ð2Þ

where the external perimeter Le is the perimeter of the convex hull of

K1 and K2 and the internal perimeter Li is the length of the “internal

envelope” of both sets, which is composed of the internal

bitangents to K1 and K2 and parts of their perimeters.1 This result

can be directly applied to our problem of determining pj in the case

where the vanishing region Vj � 
 is contained in the (convex)

image domain 
. Since we can only observe line segments that

intersect the image domain, the probability we are interested in is

actually:

pj ¼ P ½G \ Vj 6¼ ; j G \ 
 6¼ ;�

¼ �½G \ Vj 6¼ ; and G \ 
 6¼ ;�
�½G \ 
 6¼ ;� ¼ PerðVjÞ

Perð
Þ :
ð3Þ

For vanishing regions Vj \ 
 ¼ ; external to the image domain, we

just apply the second case of (2) and the probability becomes

pj ¼
Li ÿ Le
Perð
Þ : ð4Þ

The intermediate case where there is an intersection but no

inclusion is treated as this second case with

Li ¼ PerK1 þ PerK2:

2.3 Partition of the Image Plane into
Vanishing Regions

In this section, we address the problem of choosing a convenient

partition of the image plane into vanishing regions. For this

purpose, we use the following criteria:
Equal probability. We try to build a partition such that the

probability pj ¼ P ½G \ Vj 6¼ ;� that a random line G of the image

meets a vanishing region Vj is constant for all regions. Without this

equiprobability condition, certain vanishing regions would require

many more meeting lines to become meaningful than others, i.e.,

they would not be equally detectable, which is not desirable.2 We can
easily deduce from the results of the previous section that this
equiprobability condition implies that the size of Vj increases
dramatically with its distance from the image, which agrees with
the fact that the localization error of a vanishing point increases with

its distance from the image. Thus, with the equiprobability
condition, we obtain the localization error of the vanishing points
as a consequence of their detectability.

Angular precision. The size and shape of the vanishing regions
should be in accordance with the angular precision of the detected
line segments. In [20], the author addresses this problem by
considering a localization error of one pixel at the ends of the
segment, so the precision of the segment’s orientation is

d� ¼ arctan 1
l , where l is the length of the segment. The supporting

line of the segment should be rather considered as a “cone” with
angle d�. When such a cone intersects a vanishing region, the
corresponding accumulator is updated by a value proportional to
the angular fraction of the cone covered by the vanishing region.
This fraction becomes one if the vanishing region is larger than the
width of the cone. Here, we can use Shufelt’s concept, or a similar
one whose only difference is that we threshold by not considering
intersections that are too small. If Vj covers at least half of the
width of the uncertainty cone of the segment, then we consider that
there is an intersection. Otherwise, the intersection is uncertain,
and we say that the segment does not meet the vanishing region.
This way we count intersections of convex sets with lines instead of
cones. This leads us to construct the vanishing regions in such a

way that their size is comparable to the width of the corresponding
vanishing cones.

Now, we shall construct a partition of the plane into vanishing
regions that closely satisfies both criteria above. The partition is
composed of two families of vanishing regions. The first (“inter-
ior”) one consists of regions entirely contained in the image
domain 
, and the second (“exterior”) one consists of regions
outside the image domain.

For simplicity, we shall approximate the image domain by its
circumscribed circle, and consider the image domain 
 as a circle
of radius R ¼ N=

ffiffiffi
2
p

. In order to meet the angular precision
requirement, all exterior regions V will be portions of sectors of
angle d� lying between distances d and d0 from the image center O.
Then, the probability peðd; d0Þ ¼ LiÿLe

Perð
Þ that a random line meeting
the image domain 
 does also meet V can be expressed after a
simple trigonometric calculation as a function of d, d0, and d�.

Concerning the interior regions, we chose a simple tiling of the
circle 
 with square tiles. The side of each square is chosen to be
equal to the side of the exterior tiles closest to the image domain,
i.e., 2R sinðd�Þ. The perimeter of the interior regions is therefore
equal to 8R sinðd�Þ, and the probability that a line meets an interior
vanishing region is:

pi ¼
PerðV Þ
Perð
Þ ¼

4 sinðd�Þ
�

: ð5Þ

This ensures that all interior regions have the same probability,
and that their size is in accordance with the coarsest angular
precision d� of the line segments. Now, we have to choose the

values of d and d0 to ensure that all exterior regions have the same
probability pe ¼ pi. To do so, we start with the first ring of exterior

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 25, NO. 4, APRIL 2003 503

1. The proof of this result can be found in [18] and a sketch of the proof in
[2] or [1].

2. For instance, the partition into regions whose projection into the
Gaussian sphere has constant area does not necessarily satisfy this equal
probability condition. This was observed by [14] in the case of uniformly
distributed 3D lines. In this case, lines almost parallel to the image plane
become much less probable than lines which are almost orthogonal. Despite
the correction proposed in [14], this still leads to problems in the detection
of vanishing points when the perspective effect is very low (distant
vanishing points, or lines almost parallel to the image plane), as observed
by [20].
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regions setting d1 ¼ R, and we choose d01 by solving the equation

peðd1; d
0
1Þ ¼ pi for d01. Then, we fill the second ring of exterior tiles

by setting d2 ¼ d01 and solving the equation peðd2; d
0
2Þ ¼ pi for d02.

We iterate this process until we get d0 > d1, where d1 is such that

limd0!1 peðd1; d0Þ ¼ pi. We can easily check that d1 is finite and

satisfies:

4 sinðd�Þ ¼ 2d�þ �
2
ÿ � ÿ 1

cos �
þ tan�

where � ¼ arccos
R cosðd�Þ

d1

� �
:

ð6Þ

Regions in the last ring will then be unbounded, with probability

� pi. They represent parallel lines in the image plane. Figs. 1 and 2

show some examples of this partition of the image plane for

different precision levels d�.

2.4 Final Remarks

In this section, we introduce some additional criteria to suppress

spurious vanishing points and to eliminate the angular precision

parameter d�.

Multiprecision Analysis. The choice of a fixed value for the

angular precision parameter d� requires a compromise between

detectability and localization error of vanishing points. We are

interested in the highest possible precision level (smaller localiza-

tion error in the vanishing point). On the other hand, if the

precision level is too fine with respect to the angular precision of

the segments, the vanishing region will be hardly detected. The

optimal level will approximately match the precision of the

segments converging to this vanishing point, and our strategy

will be to try to adjust the precision level automatically to this

value. From simple calculations on the definition of the NFA,

we observe that, for a total N ¼ 1; 000 lines, we need about

300 concurrent lines to be meaningful at precision d� ¼ �
16 , whereas

only 15 concurrent lines are enough at precision d� ¼ �
1;024 . But, we

would only need seven concurrent lines if the total number of lines

was N ¼ 100. This discussion motivates the procedure described

below.
As in the case of alignments, instead of fixing a single angular

precision level, we will consider multiple dyadic precision levels

d� ¼ 2ÿs� for n different values of s in a certain range ½s1; sn�. In our

experiments, s ¼ 4; 5; . . . ; 7 showed to be the most useful range,

but this can be adjusted to the range of precision levels of the

extracted segments. According to the discussion above, at each

precision level d�, we should only keep those segments with a

precision level no coarser than d�. Coarser segments would

significantly increase Ns (thus, increasing the detection threshold

k) without significantly increasing the number k of lines meeting

the vanishing region. Now, we can apply the previously described

method for all precision levels. This procedure, however, may

multiply the expected number of false alarms by a factor no larger
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Fig. 1. (a) Original image with detected segments. (b) First maximal MDL vanishing region. (c) Second maximal MDL vanishing region. (d) Third maximal MDL vanishing
region. (e) Fourth to sixth maximal vanishing region, that are filtered by the MDL. (a), (b), (c), and (d) Detected line segments for a building image and the only three
maximal MDL vanishing points that are detected. They correspond to the two horizontal orientations and to one vertical orientation. Note that no orthogonality hypothesis
was used, thus it can be used a posteriori in order to calibrate some camera parameters. For each vanishing point, we only display the segments that contributed to this
point at the automatically chosen precision. (e) Before applying the MDL criterion, some spurious vanishing regions remain. Note that they arise from mixtures of real
vanishing regions and that they are significantly less meaningful and less precise than the real vanishing regions. Therefore, during MDL, most segments vote for the real
vanishing region instead of these “mixed” ones, so that after MDL their number of false alarms decreases and they are no longer meaningful.
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than n. So, in order to keep the false alarms rate smaller than ", we

modify (1) as follows:

NFAðVj;sÞ ¼
Ms

n
Bðps;Ns; kÞ: ð7Þ

The vanishing region is considered "-meaningful if k is large

enough to obtain NFAðVj;sÞ � ". With this definition, the total

expected number of false alarms from this multiprecision analysis

can be easily shown to be no larger than ". The problem is that a

single vanishing point may be meaningful at several different

precision levels, and we only want to keep the best explanation

for it.
Local maximization of meaningfulness. When a huge number of

segments meet a vanishing region Vj;s, they also meet some of the

neighboring regions at the same precision level s, as well as all

coarser regions Vj;s0 � Vj;s and some finer regions Vj;s00 � Vj;s.
Therefore, these neighboring regions too are likely to become

meaningful, but are not necessarily the best explanation. To choose

the best explanation among them, we introduce the following

maximality concept: A vanishing region Vj;s from a multiprecision

family of partitions of the image plane is maximal if it is more

meaningful than any other region intersecting it. More precisely,

Vj;s is maximal if:

8s0 2 ½s1; sn�;8j0 2 f1; . . . ;Ms0 g; Vj0 ;s0 \ Vj;s 6¼ ;
) NFAðVj0 ;s0 Þ � NFAðVj;sÞ;

ð8Þ

where A denotes the closure of a set A. Note that the the condition

Vj0 ;s0 \ Vj;s 6¼ ; includes both neighboring regions at the same level,

as well as coarser regions containing Vj;s and finer regions

contained in it.3

Minimum Description Length. Fig. 1 shows all the maximal

1-meaningful vanishing regions that are detected for the photo-

graph of a building. Clearly, the first three correspond to real

orientation in the 3D scene, whereas the other three are an artificial

mixture of different orientations. Observe that these mixtures are
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Fig. 2. (a) Original image with detected segments. (b) First maximal MDL vanishing region. (c) Second maximal MDL vanishing region. (d) First maximal MDL vanishing
region becoming meaningful after zooming in at the region of interest. (a), (b), and (c) Detected line segments for an image of a painting by Uccello and the only two
maximal MDL vanishing points that are detected. Note that the vanishing points corresponding to the oblique wall and the staircase are missed. This is due to the fact that
both the alignment detection and the vanishing point detection are global, and the less meaningful segments and vanishing points are masked by the more meaningful
horizontal and vertical orientations. (d) Illustration of the “masking” phenomenon. When we select the wall subimage in the previous figure, more alignments are detected,
and a new vanishing point that was masked in the global image becomes meaningful. This is due to two cooperating effects. First, the masking phenomenon at the
alignment detection level means that we detect in this subimage more meaningful segments than in the global image. Second, at the vanishing points detection level, the
total number of segments is smaller, which means that the minimal number of concurrent lines for a vanishing region to become meaningful k is also small. A similar
result can be obtained by restarting the MDL iteration a second time with the remaining segments after all MDL meaningful vanishing points have been detected and the
contributing segments removed.

3. We used this condition instead of inclusion because the equal
probability constraint that we used to construct our partition means that
regions at precision level sþ 1 cannot always be completely included in a
single region at the coarsest precision level s. In this situation, this
“nonempty intersection”-type condition is better suited.
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less meaningful than the original ones because only a small portion
of the segments in each direction can participate. Therefore, these
artificial vanishing regions can be filtered out by an MDL criterion
similar to the one we used for segments. Among all maximal
meaningful vanishing regions, we start a competition between
them, based on the principle that each segment has to choose a
single vanishing region which best explains its orientation. More
precisely, a segment with supporting line l is assigned to the
vanishing region Vj;s such that NFAðVj;sÞ is smallest among all
regions Vj;s met by l. Then, we recompute NFAðVj;sÞ for all
meaningful segments using (7), with the only modification being
that, instead of k, we consider k0 � k, which is the number of lines
that do not only meet Vj;s, but also have been assigned to the vanishing

region Vj;s. If the number of false alarms is still smaller than ", then
the vanishing region is a maximal MDL meaningful.

2.5 Algorithm

In order to avoid mutual exclusions, the MDL criterion is run
iteratively. In the first iteration, the Vj1

with lowest NFA is selected
as MDL meaningful. Then, k (and the corresponding NFA) is
updated for the remaining meaningful Vj’s by discounting all
segments meeting Vj1

. Thus, the NFA can only increase and the
number of meaningful regions decreases. In the ith iteration, the
ith meaningful region Vji with lowest NFA is selected as MDL
meaningful, and the remaining meaningful regions are updated by
discounting from k (and the corresponding NFA) all the segments
meeting Vji . The iteration stops when NFAðV Þ > " for all
remaining regions V .

Sometimes this procedure will still miss some weak vanishing
points which are “masked” by stronger vanishing points com-
posed of much more segments. These may not be perceived at first
sight, but only if we manage to unmask it by getting rid of the
“clutter” in one way or another. For instance, we may focus our
attention into the corresponding region, or we can hide the
stronger features. This unmasking mechanism can be simulated by
zooming into a certain region of interest as illustrated in Fig. 2d, or

by continuing our MDL iteration as follows: When no more
meaningful MDL vanishing regions exist, remove all line segments
that meet the already detected vanishing points Vj1 ; . . . ; Vji . Thus,
the total number N of segments will decrease and so will
NFAðVjÞ ¼MBðp;N; kÞ in (1). Thus, some vanishing points may
become meaningful again and we can restart the previous
iteration. This iteration allows one to distinguish a first group of
features that are meaningful on its own right, from a second group
which is only detected in the absence of the first group’s masking
effect.

The complexity of the algorithm we just described for N lines
and M tested vanishing regions is oðN

ffiffiffiffiffi
M
p
Þ for computing the line-

cell intersections, plus the MDL which takes about oðNM 0Þ per
iteration where M 0 �M is the number of meaningful regions that
have been detected at that iteration. The number M is fixed and
equal to 270,360, 67,828, and 17,195 when the finest angular
precision level is, respectively, �

1;024 , �
512 , and �

256 . An optimized
version of this software was reported to run on a 1GHz Pentium
processor in 0.16 seconds for N ¼ 64, up to 1.88s for N ¼ 1; 024. In
an image of size 512� 512, we usually detect a few hundred
alignments, so the running time of the vanishing point detector
part is negligible with respect to the alignment detection module
which does the bulk of the work. The complexity of the latter
module is oðN4Þ for an image of size N , and the running time for
N ¼ 512 is about 40 seconds, also on a 1GHz Pentium processor.

3 EXPERIMENTS AND DISCUSSION

Figs. 1 and 2 show the results of applying our algorithm for
vanishing point detection on several images.4 In most cases
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Fig. 3. (a) Original image with detected segments. (b) First (top) and second (bottom) maximal MDL vanishing regions. Accidental vanishing points. When applied to
images of man-made environments which actually contain vanishing points, the method very rarely detects accidental vanishing points. But, this does happen in natural
images in which we do not perceive such vanishing points. Here, we show one of the worst such examples that we found in our experiments. In this case, the detected
vanishing points are probably not perceived because they are made up mostly of segments that are not perceived as straight lines in the first place. Many of these
segments would be better explained as meaningful curved boundaries and, therefore, will never give rise to vanishing points. Hence, the false alarms in the vanishing
points detection phase are here to some extent the result of some special kind of false alarms in the alignment detection phase. Further, experiments on natural images
showed this kind of false alarms of vanishing points (due to some false alarms in line segments which are actually curved boundaries) to be the most prominent one.

4. In all our experiments, we used " ¼ 1 for coherence with previous
works. But, we could also have used a much smaller value since, in all the
examples presented here, all real vanishing points have NF < 0:0001.
Furthermore, " ¼ 1 means that we can expect, on average, one false
vanishing point in a random image, which is quite high with respect to the
reduced number of vanishing points we usually find in real images.
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consisting of man-made environments, the most relevant orienta-

tions are detected, without any false alarms. Fig. 1e illustrates the

need of the MDL criterion in order to filter out artificial vanishing
points that may appear when the real vanishing points are

extremely meaningful. Note that after MDL (Figs. 1b to 1d), we

only get the main three directions (two horizontal and one

vertical).
Fig. 2 illustrates the masking phenomenon. Here, the less

meaningful directions corresponding to the wall are “masked” by

the many segments in the horizontal and vertical directions, but it

can be “unmasked.” See the figure captions for a more detailed
explanation.

Finally, Fig. 3 shows the limitations of the proposed method

when applied to natural images not containing vanishing points
(see caption for details). This and other similar experiments further

enforce the conclusion in [9] on the importance of addressing the

conflicts between Gestalts. Indeed, if we were able to resolve the

conflict between the alignment and the curved boundaries
Gestalts, we would eliminate many “false” line segments and,

thus, further reduce the number of false alarms in the vanishing

point detection phase. Our experiments suggest that this approach

might be complementary to (and in certain cases better adapted
than) other approaches to reducing spurious responses rather

based on joint Gestalts at the vanishing point detection level.
It is quite difficult to build an experimental setup which allows

to fairly compare our method with previously proposed ones. The

reason is that our assumptions are quite different here since we do

not try to solve the same problem: Whereas most previous works

[14], [20], [16], [19] look for joint Gestalts that combine 3D
parallelism with some other property, here we try to push the

pure partial Gestalt of 3D parallelism to its limits.
An exception is the recent work in [4], which only relies on 3D

parallelism and has been shown to produce highly accurate

vanishing points, but assumes knowledge of the camera calibration

parameters and omnidirectional images, which is not exploited by

our method. The importance of this knowledge is not thoroughly
discussed in [4], but it was crucial in [14] in order to reduce

spurious responses. The work in [4] relies on a Hough transform as

in [14] in order to determine the number of vanishing points and is

therefore prone to the same sensitivity to the internal calibration
parameters. For this reason, it can be considered as complementary

to our method. In fact, our method could be used either in the

initialization step to determine the number and approximate

positions of vanishing points more reliably, or as a validation step
to reduce the number of false alarms.
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