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ABSTRACT

In this paper, we present a new method for registering im-

ages in presence of abnormalities. By abnormalities, we mean

variations of image intensity which are due to pathologies and

cannot be corrected by registration. Our approach consists

of characterizing them as outliers. This characterization is

obtained in a Bayesian framework, by defining registration

constraints as mixtures of distributions which describe statis-

tically image gray-level variations on both inlier and outlier

pixels. Thanks to an outlier map weighting these mixture dis-

tributions, we can also take proper advantage of some prior

knowledge about the lesion location. We use synthetic images

and mammograms to illustrate the properties of the method

and to compare it with some classical ones.

1. INTRODUCTION

Image Registration is an active topic of research, which is be-

ing motivated by a wide variety of biomedical applications

[1]. The registration of bilateral mammogram pairs or tempo-

ral sequences has been used to characterize breast asymmetry

or evolution, and to detect lesions [2, 3].

Given a source image I and a target image J , the regis-

tration problem is usually formulated in terms of an inverse

problem [4, 5, 3] which consists of finding an image coordi-

nate change φ minimizing an energy E of the form:

E(φ) = R(φ) + S(I, J, φ). (1)

The energy E is composed of a regularization term R and a

similarity term S. The later plays the role of a registration

constraint, being as low as the geometric deformation I ◦φ of

I and the target image J are “similar”.

The definition of the similarity criterion S relies on the

nature of gray-level dependencies between images. For in-

stance, the Sum of Square Differences (SSD) is a common

criterion which is used whenever gray-level values are ap-

proximately the same in images to be registered. Thanks to re-

cent works on criteria inspired from Information Theory [6],

models can now be adapted to register sets of images hav-

ing a wide variety of dependencies. However, the adequacy

This work was supported by the grant “ACI Young Researchers 2003

(French Ministry of Research)” No. 9060.

of the criterion depends on the validity of some assumptions

about the gray-level dependencies which may not always be

satisfied. In medical applications, such situations currently

arise when pathologies are present in images. For instance,

breast cancers often appear in mammograms as asymmetries

between left and right breasts (e.g. unilateral bright regions)

[7]. Such outliers are not consistent with gray-level depen-

dency assumptions. They may distort registration constraints

and cause registration errors.

In [8], F. Richard proposed a registration technique which

takes into account outliers, by down-weighting their influence

in the computation of registration constraints. The similar-

ity criterion used in [8] is related to M-estimation criteria of

robust statistics [9] which were also applied for the optical

flow computation [10]. A more general approach is the use of

mixture models, as it was already done in the framework of

optical flow estimation by Jepson and Black [11] and in the

framework of image registration by Hasler et al. [12].

In this paper, we present a mixture-based technique for

the registration of mammograms. The main feature of our

model is the use of an outlier map which weights the mixture

distributions components at each pixel, and thus enables us

to take proper advantage of some knowledge about the lesion

location (in [11], the weights are pixel independent). Further-

more, we define the mixture model for pairs of image intensi-

ties and not only for their differences as done in [12, 8].

The mixture-based image registration technique and its

mathematical formulation are presented in Section 2. In Sec-

tion 3, we illustrate the algorithm behavior on some examples

and compare it with some classical techniques.

2. THE MIXTURE-BASED TECHNIQUE

2.1. Bayesian formulation

Let I and J be two images of the same size (M, N), hav-

ing gray-level values in the set {0, ..., 255} and defined on a

discrete grid Ωd = {( i
M−1 , j

N−1 ), (i, j) ∈ {0, ..., M − 1} ×

{0, ..., N − 1}} associated to Ω = [0, 1]2. Image coordinates

are matched using deformations φ which map Ωd into itself.

Registering I and J means: find a function φ such that the

deformed image Iφ = I ◦ φ is similar to the target image J .

Our formulation follows the Bayesian framework for im-



age analysis laid out in [13]. Assuming that images and trans-

formations are realizations of some random fields, Bayes rule

can be expressed as

p(φ|I, J) α p(I, J |φ) p(φ). (2)

The Bayes rule allows us to write the posterior distribution

p(φ|I, J) in terms of the prior p(φ) and of the likelihood

p(I, J |φ). To ensure that the transformations remain smooth,

we assume that they arise from the Gibbs distribution:

p(φ) =
1

Z
e−Hd(φ) , (3)

where Z is a normalization constant, and Hd is a discrete elas-

ticity potential [14]. We can estimate the transformation φ as

the solution of the Maximum A Posteriori (MAP), which is

the value of φ maximizing p(φ|I, J):

φ̃ = argmaxφ ( p(I, J |φ) p(φ) ). (4)

2.2. Outlier modeling

We assume that outliers are present in the images (lesions in

mammograms). We define an outlier map L(x) which asso-

ciates to each pixel x of Ωd its probability to be an outlier. In

practice, the map L can be a preliminary estimation of outlier

positions which may be computed from results of some filter-

ing operations on the images I and J . In the mammography

literature, there is a wide choice of lesion detection and en-

hancement filters that we plan to use for the computation of

L. However, in this work, we will either assume that L(x)
is known (lesion segmented by an expert) or random so as

to simulate the case when no prior information about outlier

locations is available.

In order to define the likelihood p(I, J |φ), we assume that

the conditional probability of the pair of images (I, J), given

the transformation φ, depends only on the registered images

(Iφ, J) and that pixels are conditionally independent. Hence,

we can write

p(I, J |φ) = Πxp(Iφ(x), J(x)). (5)

The probability of the pair (Iφ(x), J(x)) depends on the class

of the pixel x (inlier vs outlier). Both classes are characterized

by a probability distribution, denoted by pin for the inlier class

and pout for the outlier class. The probability p(Iφ(x), J(x))
is defined as a mixture of the two class distributions

p(Iφ(x), J(x)) = (6)

(1 − L(x))pin(Iφ(x), J(x)) + L(x)pout(Iφ(x), J(x)).

In this mixture model, the value of the outlier map L at loca-

tion x is used to weight both class distributions. Let us now

give further details about distributions pin and pout.

The inlier model. In an ideal situation, gray-level values

of registered images should be exactly the same at inlier po-

sitions. But, in practice, these gray-level values usually dif-

fer because of acquisition noise, and possible slight misalign-

ments. Assuming that these variations at inlier positions have

a discrete gaussian distribution with mean 0 and variance σ2,

we can define pin as

pin(Iφ(x), J(x)) =
1

Cst
exp(−

| Iφ(x) − J(x) |

2σ2

2

), (7)

The outlier model. The definition of the outlier distribution

is a difficult task. Outliers are located at pixels where images

differ significantly, even if images are perfectly registered. In

biomedical context, such a situation typically occurs when a

lesion is present in an image and not in the other one. If we

have no specific information about the outlier distribution, we

can assume that an outlier point of an image can be associated

to any pixel of the other image. In this case, we may assume

that pout is an uniform distribution:

pout(Iφ(x), J(x)) =
1

(256)2
.

In some cases, lesions are seen as almost uniform areas (e.g.

mass lesions). If such a lesion is present in the target image J ,

we can use a distribution depending only on the target, which

is of the form:

pout(Iφ(x), J(x)) =
1

Cst
exp(−

(J(x) − m)2

2σ′2
), (8)

where m is the lesion mean gray-level, and σ′ its standard

deviation.

2.3. Numerical resolution

Up to now, we have formulated a Bayesian registration model

in a discrete setting in order to avoid the difficulty of defining

probability distributions on infinite dimensional or non linear

spaces [13]. Now, we transform formally the discrete model

into a continuous model so as to be able to use variational

resolution techniques. First, we rewrite the MAP estimate

(Equation (4)) as the minimization of the negative-log func-

tion

Ed(φ) = − log(p(φ)) − log(p(I, J |φ)).

Then, using the decomposition in Equation (5) and the Gibbs

distribution in Equation (3), we get

Ed(φ) = Hd(φ) −
∑

x∈Ωd

log(p(Iφ(x), J(x))) + K,

where K is a constant value. Next, following approaches in

[5, 14], we define a continuous expression of this energy, by

interpolating images and transformations with finite elements

and replacing sums on the pixel grid Ωd by integrals on Ω:

E(φ) = H(φ) −

∫

Ω

log(p(Iφ(x), J(x))) dx, (9)



where the probability distribution p(Iφ(x), J(x)) is given by

the mixture distribution in Equation (6). H(φ) is the elasticity

potential defined as

∑

i,j=1,2

∫

Ω

[λ
∂ui(x)

∂xi

∂uj(x)

∂xj

+ µ(
∂ui(x)

∂xj

+
∂uj(x)

∂xi

)2]dx,

where u = φ − id, and λ and µ are the Lame elasticity con-

stants. As in [3, 8], we use a gradient descent algorithm on

the energy E and finite elements to approximate solutions of

the minimization problem.

3. RESULTS

In this section, we illustrate the characteristics of the mix-

ture model, by comparing its registration results with those

of an usual SSD-based technique and the M-estimator-based

technique proposed in [8]. Note that the SSD technique is a

particular case of the mixture-based technique, obtained when

L(x) = 0, ∀x (no outliers).

3.1. Illustration on synthetic images

In the first experiment, the study image is composed of four

different constant regions. To generate the target image, the

study was deformed and a white square was added at the cen-

ter, so as to represent outliers. For the application of the

mixture-based technique, we used for L a random uniform

map (i.e. the L(x)’s are independent and uniformly distributed

on [0, 1]), a gaussian model centered at 0 with a standard de-

viation equal to 15 for the inlier distribution, and a gaussian

model centered at 255 with a standard deviation equal to 2
(Equation (8)) for the outlier distribution. Figure 1 shows the

results obtained with the three techniques.

(a) (b) (c)

(d) (e) (f)

Fig. 1. A synthetic example. (a) Source image I , (b) Target

image without outlier, (c) Target image J . Deformation of

the source onto the target using (d) the SSD technique, (e) the

M-estimation technique, (f) the mixture-based technique.

Using the SSD technique and the M-estimation technique,

the source image is not correctly deformed at the center be-

cause of the presence of outliers. The algorithm tends to

match brighter pixels of the source image and the white square

in the target, resulting in a deterioration of the deformation in

the center. This is corrected using the mixture-based tech-

nique which does not take into account the error generated by

the white square. We think that, despite the use of a random

lesion map, images are here correctly registered for mainly

two reasons: (a) the outlier model pout is perfectly adapted to

the outliers of this image ; (b) since deformations are smooth,

a random lesion map has the same effect as a constant lesion

map.

3.2. Mammogram registration

In the second experiment (Figure 2), we applied the algo-

rithms to a pair of bilateral mammograms (case 21 of the

MIAS database [15]), for which the target image contains a

lesion (bright circular region at the bottom of Image 2 (b)).

For the mixture-based technique, we used a centered gaus-

sian model with a standard deviation equal to 15 for the inlier

distribution, an uniform distribution for the outliers and a bi-

nary lesion map (Figure 3 (a)) containing the exact location of

the lesion. Results of the application of the three techniques

are shown on Figure 2.

(a) (b) (c)

(d) (e) (f)

Fig. 2. Registration of bilateral mammograms. (a) Source im-

age I , (b) Target image J , (c) Differences between images I

and J before registration. Difference between registered im-

ages with (d) the SSD technique, (e) the M-estimation tech-

nique, (f) the mixture-based technique.

Registrations obtained with the SSD technique and with

the M-estimation one tend to incorrectly match the lesion with

the bright tissues in the source image and thus reduce image

differences due to the lesion (Images 2 (d)-(e)). When using

the mixture-based technique, images are correctly registered

while differences due to the lesion are preserved (Image 2(f)).

To test the robustness of the mixture-based technique, we



did the same experiments with lesion maps corrupted by noise.

Results are shown on Figure 3.

(a) (b) (c)

(d) (e) (f)

Fig. 3. Study of the robustness. (a) Binary lesion map, (b) Le-

sion map corrupted with a uniform noise of parameter 0.5, (c)

Random lesion map, (d) Result obtained with (a), (e) Result

obtained with (b), (f) Result obtained with (c).

As observed on Figures 3(d) to (f), the registration by the

mixture-based technique is robust to the noise that may cor-

rupt the outlier map. With a noisy lesion map (b), the regis-

tration is somewhat altered (near the lesion) but differences

due to the lesion are not reduced. With a fully random map,

the registration remains correct on the lesion but becomes less

accurate in the other parts of the image.

4. CONCLUSION

In this paper, we have presented a method for mammogram

registration dealing with outliers. With some experiments, we

have demonstrated that it improves the mammogram registra-

tion in the presence of lesions. Thanks to an outlier map, the

new method allows us to take into account spatial and gray-

level information about lesions which may be present in im-

ages. In the future, we will focus on how to design outlier

maps for the different types of lesions, by adapting methods

designed for the detection and enhancement of lesion in sin-

gle image. Furthermore, we will adapt the model presented

here to combine the estimation of the lesion map and of the

deformation at the same time.
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