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Abstract. In this paper, we present a new method for simultaneously
registering mammograms and detecting abnormalities. We assume that
pixels can be divided into two classes: normal tissue and abnormalities
(lesions). We define the registration constraints as a mixture of two distri-
butions which describe statistically image gray-level variations for both
pixel classes. The two distributions are weighted at each pixel by the
probability of abnormality presence. Using the Maximum A Posteriori,
we estimate the registration transformation and the probability map of
abnormality presence at the same time. We illustrate the properties of
our technique with some experiments and compare it with some classical
methods.

1 Introduction

Mammograms are often interpreted by comparing left and right breast images
or different mammograms of a same patient. Mammogram comparisons help
radiologists to identify abnormalities and determine their clinical significance [1].
In the CAD context, image comparisons are not straightforward. The registration
of images must be carried out to compensate for some normal differences that
can cause high false-negative rates in abnormality detection schemes [2].

Several researchers have used the subtraction of registered images as a com-
parative means by which to detect abnormalities [3]. The obtained asymmetry
image is then thresholded to extract suspicious regions. Thus, the success of the
detection task depends on the preliminary registration process.

On the other hand, the registration problem is usually expressed as a mini-
mization of an energy composed of a regularization term and a similarity term.
Usually, similarity criteria rely on some assumptions about gray-level dependen-
cies between images [4], which are not valid in the presence of abnormalities. The
registration can be improved by including in the model some knowledge about
these abnormalities, as it was done in [5, 6, 7] and for the optical flow estimation
in [8].
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In this paper, we present a mixture-based technique where pixels are classified
into a normal tissue class and an abnormality class. The registration constraints
are then defined as a mixture of two distributions describing gray-level character-
istics of the two classes and which are weighted at each pixel by the probability
of abnormality presence. The main feature of our model is the possibility to com-
bine image registration and the detection of abnormalities, so as to take proper
advantage of the dependence between the two processes.

The mixture-based technique and its mathematical formulation are presented
in Section 2. In Section 3, we illustrate the method behavior on some examples
and compare it with some classical techniques.

2 Method

Let I and J be two images defined on a discrete grid Ωd associated to Ω = [0, 1]2

and called respectively source image and target image. Image coordinates are
matched using transformations φ which map Ωd into itself. We assume that
lesions may be present in the images. Let L be the lesion map which associates
to each pixel of Ωd its probability to belong to a lesion in I or J . Assuming that
all variables are realizations of some random fields, Bayes rule can be expressed
as:

p(φ, L|I, J) =
p(I, J |L, φ) p(φ) p(L)

p(I, J)
.

For the sake of simplicity, we have assumed in the above formula that the de-
formation φ and the lesion map L are independent (i.e. p(φ, L) = p(φ)p(L)).
We can estimate the pair (φ, L) as the solution of the Maximum A Posteriori
(MAP):

(˜φ, ˜L) = arg max(φ,L) p(I, J |φ, L) p(φ) p(L) .

To ensure that the transformations remain smooth, we assume that they arise
from the Gibbs distribution:

p(φ) =
1

Cst
e−Hd(φ) , (1)

where Hd is a discrete elasticity potential [9] (a continuous version is given
by Equation (5)). We also assume that the lesion map arises from a Gibbs
distribution:

p(L) =
1

Cst
e−Rd(L) , (2)

where Rd is a discrete energy of regularization. We use in this paper an energy
restricting the amount of abnormal pixels in the images via a real parameter αL:

Rd(L) = αL

∑

x∈Ωd

L(x) .

More specific terms should be defined to describe the spatial configurations of
each type of lesion. We will investigate the use of such energies in the future.
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In order to define the likelihood p(I, J |φ, L), we assume that, given the trans-
formation φ, the probability of the pair of images (I, J) depends only on the
registered images Iφ = I ◦ φ and J , and that pixels are independent. Hence, we
can write

p(I, J |φ, L) =
∏

x

p(Iφ(x), J(x)|L(x)).

The probability of the pair (Iφ(x), J(x)) depends on the class of the pixel
x. Each class is characterized by a probability distribution, denoted by pN

for the normal tissue and pL for the lesion. Thus, the probability distribution
p(Iφ(x), J(x)|L(x)) can be defined as a mixture of the two class distributions

p(Iφ(x), J(x)|L(x)) = (1 − L(x))pN(Iφ(x), J(x)) + L(x)pL(Iφ(x), J(x)). (3)

The normal tissue class. We assume that image differences generated by
normal tissue have a discrete centered Gaussian distribution with variance σ2:

pN(Iφ(x), J(x)) =
1

Cst
exp(−| Iφ(x) − J(x) |

2σ2

2

),

The lesion class. For the sake of simplicity, we assume that a lesion is present
in the target image J . We simply characterize the lesion as a region which is
brighter in the target image than it is in the source image. Hence, we get the
following distribution

pL(Iφ(x), J(x)) =
{

0 if Iφ(x) > J(x)
Cst otherwise,

Numerical resolution

Up to now, we have formulated a Bayesian registration model in a discrete
setting. We now transform the discrete model into a continuous model so as
to be able to use variational resolution techniques. First, using the negative-
log function, we rewrite the MAP estimate as an energy minimization problem.
Then, we define a continuous version of the obtained energy by interpolating all
functions by the finite element method and replacing sums on the pixel grid Ωd

by integrals on Ω. Thus, we have to minimize the energy:

E(φ, L) = H(φ) + R(L) −
∫

Ω

log(p(Iφ(x), J(x))) dx, (4)

where the probability distribution p(Iφ(x), J(x)) is the obtained continuous ver-
sion of the mixture distribution given by Equation (3). H(φ) is the elasticity
potential defined as

∑

i,j=1,2

∫

Ω

[λ
∂ui(x)

∂xi

∂uj(x)
∂xj

+ μ(
∂ui(x)
∂xj

+
∂uj(x)

∂xi
)2]dx, (5)

where u = φ − id, and λ and μ are the Lame elasticity constants.
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The term R(L) is the following energy:

R(L) = αL

∫

Ω

L(x) dx .

As in [10, 6], we use a gradient descent algorithm on the energy E and finite
elements to approximate solutions of the minimization problem.

3 Results

3.1 Experiment 1: Comparison Results

We illustrate the characteristics of this mixture-based technique by comparing
its performance with two other registration techniques. The first one is the min-
imization the Sum of Square Differences (SSD). The second one is a registration
technique proposed in [6], which is related to M-estimation in robust Statistics.
We apply the algorithms to the pair of bilateral mammograms (21, 22) of the
MIAS database [11], for which the target image contains an asymmetric density
(bright circular region at the bottom of Image 1(b). Registrations obtained with
the SSD and the M-estimation techniques tend to incorrectly match the lesion
with the bright tissue in the source image and thus reduce image differences due
to the lesion (Images 1(d),1(e)). This is corrected by the mixture-based tech-
nique where images are correctly registered while differences due to the lesion
are preserved (Image 1(f)).

In order to test the detection performance of the mixture-based technique, we
compare a lesion binary image obtained by thresholding the lesion map L̃, to
the ones obtained with the SSD and the M-estimation methods by thresholding
the images of differences. Figures 1(g)-(i) show the binary lesion images obtained
with the three techniques for the same amount of abnormal pixels. We can notice
that the mixture-based method reduces the number of false-positives.

For evaluating and comparing the three algorithms without the influence of a
threshold value, we have presented on Figure 2 the FROC curves obtained with
the three methods. The FROC curve plots the sensitivity (fraction of detected
true positives, calculated by using the expert segmented image) as a function of
the number of false positives. For the mixture-based technique, we have presented
the FROC curve obtained with αL = 0.1. When using different values of the
weight αL, we have obtained similar FROC curves.

As observed on Figure 2, the FROC curve associated to the mixture-based
method is the highest. So, the detection by the mixture-based technique is more
sensitive. For instance, for 10000 false positive pixels (2% of image pixels), the
detection rate grows from 0.632 for the SSD and 0.627 for the M-estimation
based method, to 0.947 for the mixture based method.

3.2 Experiment 2: The Prior Lesion Term

In this experiment, we study the influence of the weight associated to the reg-
ularization term RL(L) = αL

∫

Ω L(x) of the lesion map L. We use the pair
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(a) (b) (c) (d)

(e) (f) (g) (h) (i)

Fig. 1. Registration of bilateral mammograms. (a) Source image I, (b) Target image
J, (c) The difference between the images before registration. The difference between
the images after the registration using (d) the SSD method, (e) the M-estimation
method, (f) the mixture-based method. Detection results containing 4180 pixels ob-
tained with (g) the SSD method, (h) the M-estimation based method, (i) the mixture-
based method.

50000 100000 150000 200000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of false positives

P
er

ce
nt

 tr
ue

 p
os

iti
ve

 d
et

ec
te

d

Mixture−based

M−estimation

SSD

Fig. 2. FROC curves for the three detection methods

(117 − 118) of the MIAS database (Images 3(a) and 3(b)) ; the images are seg-
mented and the registration is initialized using a geometric approach based on
the matching of the contours [2].

We have applied the mixture-based technique to the pair of images (3(c),
3(d)), using the lesion class distribution described in Section 2, for different
values of the weight αL. Results are presented in Figure 4.

As shown on Figure 4, we can use the weight αL to limit the quantity of le-
sion pixels present in the image. High values of this weight restricts the amount
of lesion pixels. However, the lesion map contains isolated pixels which, clearly,
do not belong to any lesion. The use of the sum of the lesion map as the prior
potential does not take this into account. More sophisticated terms should take



210 M. Hachama, A. Desolneux, and F. Richard

(a) (b) (c) (d) (e)

Fig. 3. Registration of bilateral mammograms. (a) Source image I, (b) Target image
J, (c) the segmented and pre-registered source image, (d) the segmented target image,
(e) the expert-segmented image.

(a) (b) (c)

Fig. 4. The influence of the weight αL associated to the prior on the lesion map. The
lesion map obtained for (a) αL = 0, (b) αL = 0.001, (c) αL = 0.01.

into account the morphology of the lesion depending on its type: masses, calcifi-
cations, architectural distortions, ... In the future, we will investigate the design
of prior terms adapted to each type of lesion.

3.3 Experiment 3: The Lesion Class Distribution

In this experiment, we use the same image pair of Figure 3. We apply the
mixture-based method with different lesion class distributions.

First example. If we have no information about the photometric characteristics
of the lesion, we should use an uniform distribution:

pL(Iφ(x), J(x)) =
1

Cst
.

Second example. As explained in Section 2, one can also suppose that a lesion
is just a region in one image that is more bright that its correspondent in the
second image. If we assume that the lesion is present in the target image, we
get:

pL(Iφ(x), J(x)) =
{

0 if Iφ(x) > J(x)
Cst otherwise,
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Third example. If we have more precise information about the gray-level values
of lesion pixels, we can use a probability distribution of the form:

pL(Iφ(x), J(x)) =

{

0 if Iφ(x) > J(x)
1

Cst exp(− (J(x)−m)2

2σ2 ), otherwise,

where m is the mean value of the lesion brightness and σ its standard deviation.
In this experiment, m and σ are determined using the images and the expert-
segmented lesion image ( m = 215 and σ = 5). More generally, one can use a full
database to estimate these parameters. Detection results (lesion maps) obtained
with these three terms are shown on Figure 5.

(a) (b) (c) (d)

Fig. 5. Detection results with different lesion class distributions. Lesion map obtained
with: (a) the first model, (b) the second model, (c) the third model. (d) Expert-
segmented lesion.

As shown on Figure 5(a), when using an uniform model (which corresponds
to the case when the lesion can be present either in the target image or in the
source one), the algorithm tends to consider all asymmetric regions as lesions.
The detection results are improved by using more information. If we suppose
that the lesion is present in the target image, we can use the second distribution
which produces better results. In practice, this is the case for the detection of
the apparition, or change, of a lesion in a temporal sequence. In the third case,
we have more precise information about the gray-level values of lesion pixels in
the form of a Gaussian distribution with a known mean value and standard-
deviation. With the third distribution, we get the best detection results: false
positive are reduced and the lesion map is concentrated on the real lesion. In
practice, one can estimate the parameters of the Gaussian distribution from a
database.

4 Conclusion

We have presented a method for simultaneously registering mammograms and
detecting abnormalities. Thanks to a combined approach, the mixture-based
method improves the mammogram registration and reduces the false-positives
rate for the lesion detection. In the future, we will focus on the design of lesion
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models for different types of lesions, and the estimation of the distribution pa-
rameters for both lesion and normal tissue classes. Furthermore, we will test the
mixture-based method on a mammogram database.
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