
Journal of Mathematical Imaging and Vision 14: 271–284, 2001
c© 2001 Kluwer Academic Publishers. Manufactured in The Netherlands.

Edge Detection by Helmholtz Principle
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Abstract. We apply to edge detection a recently introduced method for computing geometric structures in a
digital image, without any a priori information. According to a basic principle of perception due to Helmholtz,
an observed geometric structure is perceptually “meaningful” if its number of occurences would be very small in
a random situation: in this context, geometric structures are characterized as large deviations from randomness.
This leads us to define and compute edges and boundaries (closed edges) in an image by a parameter-free method.
Maximal detectable boundaries and edges are defined, computed, and the results compared with the ones obtained
by classical algorithms.
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1. Introduction

In statistical methods for image analysis, one of the
main problems is the choice of an adequate prior. For
example, in the Bayesian model [9], given an observa-
tion “obs”, the aim is to find the original “model” by
computing the Maximum A Posteriori (MAP) of

P[model | obs] = P[obs | model] × P[model]

P[obs]
.

The term P[obs | model] represents the degradation
(superimposition of a gaussian noise for example) and
the term P[model] is called the prior. This prior plays
the same role as the regularity term in the variational
framework. This prior has to be fixed and it is gener-
ally difficult to find a good prior for a given class of
images. It is also probably impossible to give an all-
purpose prior!

In [6 and 7], we have outlined a different statis-
tical approach, based on phenomenological observa-
tions coming from Gestalt theory [21, 27, 29]. Accord-
ing to a perception principle which seems to go back
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to Helmholtz, every large deviation from a “uniform
noise” image should be perceptible, provided this large
deviation corresponds to an a priori fixed list of geo-
metric structures (lines, curves, closed curves, convex
sets, spots, local groups, . . . ). Thus, there still is an a
priori geometric model, but, instead of being quantita-
tive, this model is merely qualitative. Let us illustrate
how this should work for “grouping” black dots in a
white sheet. Assume we have a white image with black
dots spread out. If some of them form a cluster, say, in
the center of the image, then, in order to decide whether
this cluster indeed is a group of points, we compute the
expectation of this grouping event happening by chance
if the dots were uniformly disributed in the image. If
this expectation happens to be very low, we decide that
the group in the center is meaningful. Thus, instead
of looking for objects as close as possible to a given
prior model, we consider a “wrong” and naive model,
actually a random uniform distribution, and then de-
fine the “objects” as large deviations from this generic
model. One can find in [13] a very close formulation
of computer vision problems.

We may call this method Minimal A Posteriori
Expectation, where the prior for the image is a uniform
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random noise model. Indeed, the groups (geometric
structures, gestalts1) are defined as the best counter-
examples, i.e. the least expected. Those counterexam-
ples to the uniform noise assumption are taken in a
restricted geometric class. Notice that not all such coun-
terexamples are valid: the Gestalt theory fixes a list of
perceptually relevant geometric structures which are
supposedly looked for in the perception process. The
computation of their expectation in the uniform noise
model validates their detection: the least expected in
the uniform noise model, the more perceptually mean-
ingful they will be.

This uniform noise prior is generally easy to define.
Consider for example the case of orientations: since we
do not have any reason to favour some directions, the
prior on the circle S1 will be the uniform distribution.
We applied this method in a previous paper dedicated
to the detection of meaningful alignments [6]. In [7]
we have generalized the same method to the definition
of what we called “maximal meaningful modes” of a
histogram. This definition is crucial in the detection of
many geometric structures or gestalts, like groups of
parallel lines, groups of segments with similar lengths,
etc.

It is clear that the above outlined Minimum A Pos-
teriori method will prove its relevance in Computer
Vision only if it can be applied to each and all of the
gestalt qualities proposed by phenomenology. Actu-
ally, we think the method might conversely contribute
to a more formal and general mathematical definition
of geometric structures than just the ones coming from
the usual plane geometry. Now, for the time being, we
wish to validate the approach by matching the results
with all of the classicaly computed structures in image
analysis. In this paper, we shall address the comparison
of edge and boundary detectors obtained by the Min-
imum A Posteriori method with the ones obtained by
state of the art segmentation methods.

A main claim in favour of the Minimum A Posteriori
is its reduction to a single parameter, the meaningful-
ness of a geometric event depending only on the dif-
ference between the logarithm of the false alarm rate
and the logarithm of the image size! We just have to
fix this false alarm rate and the dependance of the out-
come is anyway a log-dependence on this rate, so that
the results are very insensitive to a change. Our study
of edge detection will confirm this result, with slightly
different formulas though.

In addition, and although the list of geometric struc-
tures looked for is wide (probably more than ten in

Gestalt theory), the theoretical construction will make
sense if they are all deduced by straightforward adap-
tations of the same methodology to the different ge-
ometric structures. Each case of geometric structure
deserves, however, a particular study, in as much as
we have to fix in each case the “uniform noise” model
against which we detect the geometric structure. We
do not claim either that what we do is 100% new:
many statistical studies on images propose a “back-
ground” model against which a detection is tested; in
many cases, the background model is a merely uni-
form noise, as the one we use here. Optimal thresh-
olds have been widely addressed for detection or im-
age thresholding [1, 10, 19, 22] Also, many applied
image analysis and engineering methods, in view of
some detection, address the computation of a “false
alarm rate”. Our “meaningfulness” is nothing but such
a false alarm rate, but applied to very general geomet-
ric objects instead of particular looked for shapes and
events.

As was pointed out to us by David Mumford, our
method is also related to the statistical hypothesis test-
ing, where the asked question is: does the observation
follow the prior law given by Helmoltz principle? The
gestalts will be the “best proofs” (in terms of the a pri-
ori fixed geometric structures) that the answer to this
question is no.

Let us summarize: not all geometric structures are
perceptually relevant; a small list of the relevant ones
is given in Gestalt theory; we can “detect” them one
by one by the above explained Helmholtz principle as
large deviations from randomness. Now, the outcome is
not a global interpretation of the image, but rather, for
each gestalt quality (alignment, parallelism, edges), a
list of the maximal detectable events. The maximality
is necessary, as shows the following example, which
can be adapted to each other gestalt: assume we have
detected a dense cluster of black dots; this means that
the expectation of such a big group is very small for a
random uniform distribution of dots. Now, very likely,
many subgroups of the detected dots and also many
larger groups will have a small expectation too. So we
can add spurious elements to the group and still have a
detectable group. Thus, maximality is very relevant in
order to obtain the best detectable group. We say that
a group or gestalt is “maximal detectable” if any sub-
group and any group containing it are less detectable,
that is, have a smaller expectation.

We shall address here one of the serpents de mers
of Computer Vision, namely “edge” and boundary
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“detection” [8, 9, 12, 17, 20, 25, 26, 30, 33]. We define
an “edge” as a level line along which the contrast of
the image is strong. We call “boundary” a closed edge.
We shall in the following give a definition of mean-
ingfulness and of optimality for both objects. Then,
we shall show experiments and discuss them. A com-
parison with the classical Mumford-Shah segmentation
method will be made and also with the Canny-Deriche
edge detector. We shall give a (very simple in that case)
proof of the existence of maximal detectable gestalt,
applied to the edges. What we do on the edges won’t
be a totally straightforward extension of the method we
developped for alignments in [6]. Indeed, we cannot do
for edge or boundary strength as for orientation, i.e. we
cannot assume that the modulus of the gradient of an
image is uniformly distributed.

2. Contrasted Boundaries

We call “contrasted boundary” any closed curve, long
enough, with strong enough contrast and which fits
well to the geometry of the image, namely, orthogonal
to the gradient of the image at each one of its points.
We will first define ε-meaningful contrasted bound-
aries, and then maximal meaningful contrasted bound-
aries. Notice that this definition depends upon two
parameters (long enough, contrasted enough) which
will be usually fixed by thresholds in a computer vi-
sion algorithm, unless we have something better to
say. In addition, most boundary detection will, like
the snake method [12], introduce regularity parame-
ters for the searched for boundary [16]. If we remove
the condition “long enough”, we can have boundaries
everywhere, as is patent in the classical Canny filter
[2].

The considered geometric event will be: a strong
contrast along a level line of an image. Level lines are
curves directly provided by the image itself. They are
a fast and obvious way to define global, contrast insen-
sitive candidates to “edges” [3]. Actually, it is well ac-
knowledged that edges, whatever their definition might
be, are as orthogonal as possible to the gradient [2, 4,
8, 14, 20]. As a consequence, we can claim that level
lines are the adequate candidates for following up lo-
cal edges. The converse statement is false: not all level
lines are “edges”. The claim that image boundaries (i.e.
closed edges) in the senses proposed in the literature
[18, 23] also are level lines is a priori wrong. How
wrong it is will come out from the experiments, where
we compare an edge detector with a boundary detec-

tor. Surprisingly enough, we will see that they can give
comparable results.

We now proceed to define precisely the geometric
event: “at each point of a length l (counted in indepen-
dent points) part of a level line, the contrast is larger
than µ”. Then, we compute the expectation of the num-
ber of occurrences of such an event (i.e. the number of
false alarms). This will define the thresholds: minimal
length of the level line, and also minimal contrast in
order to be meaningful. We will give some examples
of typical numerical values for these thresholds in dig-
ital images. Then, as we mentioned has been done for
other gestalts like alignments and histograms, we will
define here a notion of maximality, and derive some
properties.

2.1. Definitions

Let u be a discrete image, of size N × N . We consider
the level lines at quantized levels λ1, . . . , λk . The quan-
tization step q is chosen in such a way that level lines
make a dense covering of the image: if e.g. this quan-
tization step q is 1 and the natural image ranges 0 to
256, we get such a dense covering of the image. A level
line can be computed as a Jordan curve contained in the
boundary of a level set with level λ,

χλ = {x/u(x) ≤ λ} and χλ = {x/u(x) ≥ λ}.
Notice that along a level line, the gradient of the image
must be everywhere above zero. Otherwise the level
line contains a critical point of the image and is highly
dependent upon the image interpolation method. Thus,
we consider in the following only level lines along
which the gradient is not zero. The interpolation con-
sidered in all experiments below is the order zero in-
terpolation (the image is considered constant on each
pixel and the level lines go between the pixels).

Let L be a level line of the image u. We denote
by l its length counted in independent points. In the
following, we will consider that points at a geodesic
distance (along the curve) larger than 2 are independent
(i.e. the contrast at these points are independent random
variables). Let x1, x2, . . . , x1 denote the l considered
points of L . For a point x ∈ L , we will denote by c(x)

the contrast at x . It is defined by

c(x) = |∇u|(x), (1)

where ∇u is computed by a standard finite difference
on a 2 × 2 neighborhood [7]. For µ ∈ R

∗
+, we consider
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the event: for all 1 ≤ i ≤ l, c(xi ) ≥ µ, i.e. each point of
L has a contrast larger than µ. From now on, all com-
putations are performed in the Helmholtz framework
explained in the introduction: we make all computa-
tions as though the contrast observations at xi were
mutually independent. Since the l points are indepen-
dent, the probability of this event is

P[c(x1) ≥ µ] × P[c(x2) ≥ µ]

× · · · × P[c(xl) ≥ µ] = H(µ)l , (2)

where H(µ) is the probability for a point on any level
line to have a contrast larger than µ. An important ques-
tion here is the choice of H(µ). Shall we consider that
H(µ) is given by an a priori probability distribution,
or is it given by the image itself (i.e. by the histogram
of gradient norm in the image)? In the case of align-
ments, we took by Helmholtz principle the orientation
at each point of the image to be a random, uniformly
distributed variable on [0, 2π ]. Here, in the case of con-
trast, it does not seem sound at all to consider that the
contrast is uniformly distributed. In fact, when we ob-
serve the histogram of the gradient norm of a natural
image (see Fig. 1), we notice that most of the points
have a “small” contrast (between 0 and 3), and that only
a few points are highly contrasted. This is explained by
the fact that a natural image contains many flat regions
(the so called “blue sky effect”, [11, 32]. In the follow-
ing, we will consider that H(µ) is given by the image
itself, which means that

H(µ) = 1

M
#{x/|∇u|(x) ≥ µ}. (3)

where M is the number of pixels of the image where
∇u �= 0. In order to define a meaningful event, we
have to compute the expectation of the number of oc-
currences of this event in the observed image. Thus, we
first define the number of false alarms.

Definition 1 (Number of false alarms). Let L be a
level line with length l, counted in independent points.
Let µ be the minimal contrast of the points x1, . . . , x1

of L . The number of false alarms of this event is defined
by

NF(L) = Nll × [H(µ)]l , (4)

where Nll is the number of level lines in the image.

Notice that the number Nll of level lines is provided
by the image itself. We now define ε-meaningful level

lines. The definition is analogous to the definition of
ε-meaningful modes of a histogram or to the definition
of alignments: the number of false alarms of the event
is less than ε.

Definition 2 (ε-meaningful boundary). A level line L
with length l and minimal contrast µ is an ε-meaningful
boundary if

NF(L) = Nll × [H(µ)]l ≤ ε. (5)

The above definition involves two variables: the
length l of the level line, and its minimal contrast µ.
The number of false alarms of an event measures the
“meaningfulness” of this event: the smaller it is, the
more meaningful the event is.

Let us now proceed to define “edges”. We denote by
Nllp the number of pieces of level lines in the image.

Definition 3 (ε-meaningful edge). A piece of level
line E with length l and minimal contrast µ is an
ε-meaningful edge if

NF(E) = Nllp × [H(µ)]l ≤ ε. (6)

Here is how Nllp is computed: we first compute all
level lines at uniformly quantized levels (grey level
quantization step is 1 and generally ranges from 1 to
255. For each level line, Li with length li , we compute
its number of pieces, sampled at pixel rate, the length
unit being pixel side. We then have

Nllp =
∑

i

li (li−1)

2
.

This fixes the used number of samples. This number of
samples will be fair for a 1-pixel accurate edge detec-
tor. Clearly, we do detection and not optimization of
the detected edge: in fact, according to Shannon condi-
tions, edges have a between two or three pixels width.
Thus, the question of finding the “best” edge represen-
tative among the found ones is not addressed here, but
has been widely addressed in the literature [2, 4].

2.2. Thresholds

In the following we will denote by F the function de-
fined by

F(µ, l) = Nll × [H(µ)]l . (7)
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Figure 1. From left to right: 1. original image; 2. histogram of the norm of the gradient; 3. its repartition function (µ �→ P[|∇u| ≥ µ]).

Thus, the number of false alarms of a level line of length
l and minimal contrast µ is simply F(µ, l).

Since the function µ �→ H(µ) = P[c(x) ≥ µ] is
decreasing, and since for all µ, we have H(µ) ≤ 1, we
obtain the following elementary properties:

– We fix µ and l ≤ l ′, then

F(µ, l) ≥ F(µ, l ′),

which shows that if two level lines have the same
minimal contrast, the more meaningful one is the
longer one.

– We fix l and µ ≤ µ′, then

F(µ, l) ≥ F(µ′, l),

which shows that if two level lines have the same
length, the more meaningful one is the one with
higher contrast.
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When the contrast µ is fixed, the minimal length
lmin(µ) of an ε-meaningful level line with minimal con-
trast µ is

lmin(µ) = log ε− log Nll

log H(µ)
. (8)

Conversely, if we fix the length l, the minimal contrast
µmin(l) needed to become ε-meaningful is such that

µmin(l) = H−1([ε/Nll]
1/ l). (9)

2.3. Maximality

In this subsection, we address two kinds of maximal-
ity for the edges and the boundaries. Let us start with
boundaries. A natural relation between closed level
lines is given by their inclusion [15]. If C and C ′ are
two different closed level lines, then C and C ′ can-
not intersect. Let D and D′ denote the bounded do-
mains surrounded by C and C ′. Either D ∩ D′ = φ or
(D ⊂ D′ or D′ ⊂ D). We can consider, as proposed
by Monasse, the inclusion tree of all level lines. From
now on, we work on the subtree of the detected level
curves, that is, the ones for which F(µ, l) ≤ ε where
ε is our a priori fixed expectation of false alarms. (In
practice, we take ε = 1 in all experiments.) On this sub-
tree, we can, following Monasse, define what we shall
call a maximal monotone level curve interval, that is, a
sequence of level curves Ci , i ∈ [1, k] such that:

– for i ≥ 2, Ci is the unique son of Ci−1,
– the interval is maximal (not contained in a longer

one)
– the grey levels of the detected curves of the interval

are either decreasing from 1 to k, or increasing from
1 to k.

We can see many such maximal monotone intervals
of detected curves in the experiments: they roughly cor-
respond to “fat” edges, made of several well contrasted
level lines. The edge detection ideology tends to define
an edge by a single curve. This is easily made by select-
ing the best contrasted edges along a series of parallel
ones.

Definition 4. We associate with each maximal mono-
tone interval its optimal level curves, that is, the ones
for which the false alarms number F(µ, l) is minimal
along the interval. We call “optimal boundary map” of
an image the set of all optimal level curves.

This optimal boundary map will be compared in the
experiments with classical edge detectors or segmen-
tation algorithms.

We now address the problem of finding optimal
edges among the detected ones. We won’t be able to
proceed as for the boundaries. Although the pieces of
level lines inherit the same inclusion structure as the
level lines, we cannot compare two of them belong-
ing to different level curves for detectability, since they
can have different positions and lengths. We can in-
stead compare two edges belonging to the same level
curve. Our main aim is to define on each curve a set of
disjoint maximally detectable edges. In the following,
we denote by NF(E) = F(µ, l) the false alarm num-
ber of a given edge E with minimal gradient norm µ

and length l.

Definition 5. We call maximal meaningful edge any
edge E such that for any other edge E ′ on the same
level curve such that E ⊂ E ′ (resp. E ′ ⊂ E) we have
NF(E ′) > NF(E) (resp. NF(E ′) ≥ NF(E)).

This definition follows [6, 7] where we apply it to the
definition of maximal alignments and maximal modes
in a histogram.

Proposition 1. Two maximal edges cannot meet.

Proof: Let E and E ′ be two maximal distinct and
non-disjoint meaningful edges in a given level curve
and µ and µ′ the respective minima of gradient of the
image on E and E ′. Assume e.g. that µ′ ≤ µ. Then
E ∪ E ′ has the same minimum as E ′ but is longer. Thus,
by the remark of the preceding subsection, we have
F(µ′, l + l ′) < F(µ′, l ′), which implies that E ∪ E ′ has
a smaller number of false alarms than E ′. Thus, E ′ is
not maximal. As a consequence, two maximal edges
cannot meet. ✷

3. Experiments

3.1. INRIA Desk Image (Fig. 2)

In this experiment, we compare our method with two
other methods: Mumford and Shah image segmentation
and Canny-Deriche edge detector.

In the Mumford and Shah model [17], given an ob-
served image u defined on the domain D, one looks for
the piecewise approximation v of u that minimizes the
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Figure 2. First row: left: original image; right: boundaries obtained
with the Mumford-Shah model (1000 regions). Second row: edges
obtained with Canny-Deriche edge detector, for two different thresh-
old values (2 and 15). Third row: edges (left) and boundaries (right)
obtained with our model (ε = 1). Fourth row: reconstruction with the
Mumford-Shah model (left) and with our model (right). This last re-
construction is easily performed by the following algorithm: attribute
to each pixel x the level of the smallest (for inclusion) meaningful
level line surrounding x (see [15]).

functional

E(v) =
∫

D
|v−u|2 + λlength(K (v)),

where length (K (v)) is the one-dimensional measure
of the discontinuity set of v, and λ a parameter. Hence,

this energy is a balance between a fidelity term (the
approximation error in L2 norm) and a regularity term
(the total length of the boundaries). The result v, called
a segmentation of u, depends upon the parameter λ, that
indicates how to weight both terms. As shown on Fig. 2,
the Mumford-Shah model generally produces reason-
able boundaries except in “flat” zones where spurious
boundaries often appear (see the front side of the desk
for example). This is easily explained: the a priori
model is: the image is piecewise constant with bound-
aries as short as possible. Now, the image does not fit
exactly the model: the desk in the image is smooth but
not flat. The detected “wrong” boundary in the desk is
necessary to divide the desk into flat regions. The same
phenomenon occurs in the sky of the cheetah image
(next experiment).

The Canny-Deriche filter [2, 5] is an optimization of
Canny’s well known edge detector, roughly consisting
in the detection of maxima of the norm of the gra-
dient in the direction of the gradient. Notice that, in
contrast with the Mumford-Shah model and with our
model, it does not produce a set of boundaries (ie one-
dimensional structures) but a discrete set of points that
still are to be connected. It depends on two parameters:
the width of the impulse response, generally set to 1
pixel, and a threshold on the norm of the gradient that
selects candidates for edge points. As we can see on
Fig. 2, the result is very dependent on this threshold.
Thus, we can consider the meaningfulness as a way to
select the right edges. If Canny’s filter were completed
to provide us with pieces of curves, our algorithm could
a posteriori decide which of them are meaningful. No-
tice that many Canny edges are found in flat regions of
the image, where no perceptual boundary is present. If
we increase the threshold, as is done on the right, the
detected edges look perceptually more correct, but are
broken.

3.2. Cheetah Image (Fig. 3)

This experiment compares our edge detector with the
Mumford-Shah model. As before, we observe that the
Mumford-Shah model produces some spurious bound-
aries on the background, due to the inadequacy of the
piecewise constant model. This means that a more so-
phisticated model must be applied if we wish to avoid
such spurious boundaries: the general Mumford-Shah
model replaces the piece-wise constant constraint by a
smoothness term (the Dirichlet integral

∫ |∇u|2(x) dx)
on each region. Now, adding this term means using a
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Figure 3. First row: original image (left) and boundaries obtained with the Mumford-Shah model with 1000 regions (right). Second row: edges
(left) and boundaries (right) obtained with our method (ε = 1).

two-parameters model since, then, the Mumford-Shah
functional has three terms whose relative weights must
be fixed.

3.3. DNA Image (Fig. 4)

This experiment illustrates the concept of “optimal
boundaries” that we have introduce previously. When
we compute the boundaries of the original image, each
“spot” produces several parallel boundaries due to the
important blur. With the definition of maximality we
adopted, we select exactly one boundary for each spot.

3.4. Segments Image (Fig. 5)

As in the DNA experiment, the “optimal boundaries”
allow to select exactly one boundary per object (here,
hand-drawn segments). In particular, the number of
boundaries we find (21) counts exactly the number of
segments.

3.5. Noise Image (Fig. 6)

This image is obtained as a realization of a Gaussian
noise with standart deviation 40. For ε = 1 and ε = 10,
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Figure 4. From top to bottom: 1. original image; 2. boundaries; 3.
optimal boundaries.

no boundaries are detected. For larger values of ε, some
boundaries begin to be detected: 7 for ε = 100 (see Fig.
6), 148 for ε = 1000 and 3440 for ε = 10000.

4. Discussion and Conclusion

In this discussion, we shall address objections and com-
ments made to us by the anonymous referees and also
by José-Luis Lisani, Yves Meyer and Alain Trouvé.
In all that follows, we call respectively “boundary de-

Figure 5. Up: original image. Downleft: boundaries. Downright:
optimal boundaries.

Figure 6. Left: an image of a Gaussian noise with standart devi-
ation 40. Right: the meaningful boundaries found for ε = 100 (no
boundaries are found for ε = 1).

tection algorithm” and “edge detection algorithm” the
algorithms we proposed. The other edge or bound-
ary detection algorithms put into the discussion will
be called by their author’s names (Mumford-Shah,
Canny).

4.1. Eleven Objections and their Answers

Objection 1: The blue sky effect. If a significant part
of a natural image happens to be very flat, because of
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a “blue sky effect”, then most level lines of the image
will be detected as meaningful. If (e.g.) one tenth of
the image is a black flat region, then the histogram of
the gradient has a huge peak near zero. Thus, all gra-
dients slightly above this peak will have a probability
9
10 significantly smaller than 1. As a consequence,
all level lines long enough (with length larger than,
say, 30 pixels) will be meaningful. In practice, this
means that the image will be plagued with detected
level lines with a small contrast. These detected level
lines are no edges under any decent criterion?

Answer 1: If the image has a wide “blue sky”, then most
level lines of the ground are meaningful because
any strong deviation from zero becomes meaningful.
This effect can be checked on the cheetah image: the
structured and contrasted ground has lots of detected
boundaries (and the sky has none). This outcome can
be interpreted in the following way: when a flat re-
gion is present in the image, it gives, via the gradient
histogram, an indirect noise estimate. Every gradient
which is above the noise gradient of the flat region
becomes meaningful and this is, we think, correct.

Objection 2: Dependence upon windows. Then the
detection of a given edge depends upon the window
(containing the edge) on which you apply the algo-
rithm?

Answer 2: Yes, the algorithm is global and is affected
by a reframing of the image. If (e.g.) we detect edges
on a window essentially containing the sky, we shall
detect more boundaries (see Fig. 7) and if we com-
pute edges in a window only containing the con-
trasted boundaries, it will detect less boundaries.

Question 3: How to compute edges with multiple
windows? Thus, you can apply your detection algo-
rithm on any window of the image and get more and
more edges!

Answer 3: Yes, but, first, if the window is too small,
no edge will be detected at all. Second, if we apply
the algorithm to say, on 100 windows, we must take
into account in our computations that the number of
tests is increased. Thus, we must decrease accord-
ingly the value of ε in order to avoid false detections:
an easy way is to do it is this: if we have 100 win-
dows, we can take on each one ε = 1/100. Then
the global number of false alarms over all windows

Figure 7. First row: left: original image (chinese landscape); right:
maximal meaningful edges for ε = 1. Second row: the same algo-
rithm, but run on a subwindow (drawn on the left image); right: the
result (in black), with in light grey the edges that were detected in
the full image.

remains equal to 1. Thus, a multiwindows version of
the algorithm is doable and recommandable. Indeed,
psychophysics and neurophysiology both advocate
for a spatially local treatment of the retinian infor-
mation.

Objection 4: Synthetic images where everything is
meaningful. If an image has no noise at all (synthetic
image), all boundaries contain relevant information.
All the same, your algorithm won’t detect them all?

Answer 4: Right. If a synthetic binary image is made
(e.g.) of a black square with white background, then
all gradients are zero except on the square’s bound-
ary. The gradient histogram has one single value,
255. (Remember that zero values are excluded from
the gradient histogram). Thus, H(255) = 1 which
means that no line is meaningful. Thus, the square’s
boundary won’t be detected, which is a bit paradox-
ical! The addition of a tiny noise or of a slight blur
would of course restore the detection of this square’s
boundary. This means that synthetic piecewise con-
stant images fall out of the range or the detection
algorithm. Now, in that case, the boundary detection
is trivial by any other edge detector and our algo-
rithm is not to be applied.

Question 5: Class of images to which the algorithm
is adapted? Is there a class of images for which the
Mumford-Shah functional is better adapted and an-
other class of images where your algorithm is more
adapted?
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Answer 5: Our comparison of both algorithms may
be misleading. We are comparing methods with dif-
ferent scopes. The Mumford-Shah algorithm aims
at a global and minimal explanation of the im-
age in terms of boundaries and regions. As we
pointed out in the discussion of the experiments,
this global model is robust but rough, and more so-
phisticated models would give a better explanation,
provided the additional parameters can be estimated
(but how?).

The detection algorithm does not aim at such a
global explanation: it is a partial detection algorithm
and not a global explanation algorithm. In particu-
lar, detected edges can be doubled or tripled or more,
since many level lines follow a given edge. In con-
trast, the Mumford-Shah functional and the Canny
detector attempt at selecting the best representative
of each edge. Conversely, the detection algorithm
provides a check tool to accept or reject edges pro-
posed by any other algorithm.

Objection 6: The algorithm depends upon the quan-
tization step. The algorithm depends upon the quan-
tification step q . When q tends to zero, you will
get more and more level lines. Thus Nll and Nllp

(numbers of level lines and pieces of level lines
respectively) will blow up. Thus, you get less and
less detections when q increases and, at the end,
none!

Answer 6: Right again. The numbers Nll and Nllp stand
for the number of effectuated tests on the image.
When the number of tests tends to infinity, the num-
ber of false alarms of Definition 1 also tends to infin-
ity. Now, as we mentionned, q must be large enough
in order to be sure that all edges contain at least one
level line. Since the quantization noise is 1 and the
standard deviation of noise never goes below 1 or 2,
it is not likely to find any edge with contrast smaller
than 2. Thus, q = 1 is enough, and we cannot miss
any detectable edge. If we take q smaller, we shall
get more spatial accuracy to the cost of less detec-
tions.

Question 7: Accuracy of the edges depends upon
the quantization step. All the same, if q is not very
small, you lose accuracy in the position detection.
Indeed, the quantized levels do not coincide with the
optimal level of the edge, as it would be found by a
Canny edge detector.

Answer 7: Right again. The Canny edge detector per-
forms two tasks in one: detecting and optimizing the
edge’s position at subpixel accuracy. The proposed
detection algorithm does not find the optimal posi-
tion of each edge. The spatial accuracy is roughly
q/ min |∇u|, where the min is computed on the de-
tected edge. In the case of the detection of optimal
boundaries, we therefore get this spatial accuracy for
the detected optimal boundaries. Of course, a post-
processing finding for each edge the best position in
terms of detectability is possible.

Objection 8: Edges are not level lines. You claim that
every edge coincides with some level line. This is
simply not true!

Answer 8: If an edge has contrast kq, where q is the
quantization step (usually equal to 1), then k level
lines coincide with the edge, locally. Of course, one
can construct long edges whose contrast is every-
where k but whose average level varies in such a way
that no level line fully coincides with the edge. Now,
long pieces of level lines coincide partially with it.
Thus, detection of this edge by the detection algo-
rithm is possible all the same, but it will be detected
as a union of several more local edges.

Objection 9: Values of the gradient on the level lines
are not independent. You chose as test set the set of
all level lines. You claim that the gradient amplitudes
at two different points of every edge are independent.
This is, in most images, not true.

Answer 9: The independence assumption is, indeed,
not a realistic assumption. It is made in order to
apply the Helmholtz principle, according to which
every large deviation from uniform randomness as-
sumption is perceptible. Thus, the independence as-
sumption is not a model for the image; it is an a
contrario assumption against which the gestalts are
detected.

Objection 10: A minimal description model would
do the job as well. A minimal description model
(MDL) can contain very wide classes of models for
which parameters will be estimated by the MDL
principle of shortest description in a fixed language
[24, 28, 31]. This fixed language can be the lan-
guage of Gestalt theory: explain the image in terms of
lines, curves, edges, regions, etc. Then existence and
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nonexistence of a given gestalt would come out from
the MDL description: a “detectable” edge would be
an edge which is used by the minimal description.
Thus, thresholds would be implicit in a MDL model,
but exist all the same.

Answer 10: A MDL model is global in nature. Until
we have constructed it, we cannot make any com-
parison. In a MDL model, the thresholds on edges
would depend on all other gestalts. Thus, we would
be in the same situation as with the Mumford-Shah
model: we have seen that a slight error on the re-
gion model leads to a false detection for edges. The
main advantage of the proposed method relies on its
lack of ambition: it is a partial gestalt detection algo-
rithm, which does not require any global explanation
model in order to be applied. We may compare the
outcome of the algorithm with the computation in
optimization theory of feasible solutions. Feasible
solutions are not optimal. We provide feasible, i.e.
acceptable edges. We do not provide an optimal set
of edges as is aimed at by the other considered meth-
ods.

Objection 11: Is ε a method parameter? You claim
that the method has no parameter. We have seen in
the course of the discussion not less than three pa-
rameters coming out: the choice of the windows,
the choice of q , and finally the choice of ε. So
what?

Answer 11: We always fix ε = 1. Indeed, as we proved,
the dependence of detectability upon ε is a Log-
dependence. We also fix q = 1, but, here again, the
q dependence would be a Log-dependence, since
the number of level lines varies roughly linearly
as a function of q . Finally, it is quite licit to take
as many windows as we wish, provided we take
εk = 1/k where k is the number of windows. This
yields a false alarm rate of 1 over all windows.
Again, since the number of windows is necessar-
ily small (they make a covering of the image and
cannot be too small), we can even take εk = 1 be-
cause of the Log-dependence mentioned above. To
summarize, ε = 1 is not a parameter. When we sub-
divide our set of tests in subsets on several windows,
we must of course divide this value 1 by the number
of sets of subtests. This does not require any user’s
input.

5. Conclusion

In this paper, we have tried to stress the possibility of
giving a perceptually correct check for any boundary
or edge proposed by any algorithm. Our method, based
on the Helmholtz principle, computes thresholds of de-
tectability for any edge. This algorithm can be applied
to level lines or to pieces of level lines and computes
then all detectable level lines. One cannot view the al-
gorithm as a new “edge detector”, to be added to the
long list of existing ones; indeed, first, the algorithm
does not select the “best” edge as the other algorithms
do. Thus, it is more primitive and only yields “feasible”
candidates to be an edge. Only in the case of boundary
detection can it be claimed to give a final boundary de-
tector. Now, this boundary detector may anyway yield
multiple boundaries. On the other hand, the proposed
method has the advantage of giving for any boundary
or edge detector a sanity check.

Thus, it can, for any given edge detector, help re-
moving all edges which are not accepted from the
Helmholtz principle viewpoint. As a sanity check, the
Helmholtz principle is hardly to be discussed, since it
only rejects any edge which could be observed in white
noise.

The number of false alarms gives, in addition, a way
to evaluate the reliability of any edge and we think that
the maximality criterion could also be used in conjonc-
tion with any edge detector.

Finally, we can claim that the kind of algorithm and
experiments proposed here advocate for the necessity
and usefulness of an intermediate layer in image analy-
sis algorithms, where feasibility of the sought for struc-
tures is checked before any more global interpretation
is attempted by a variational method.

Note

1. We choose to write gestalt(s) instead of the german original
Gestalt (en). We maintain the german spelling for “Gestalt the-
ory”.
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