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Dequantizing Image Orientation

Agnés Desolneux, Said Ladjal, Lionel Moisan, and Jean-Michel Morel

Abstract—\We address the problem of computing a local orienta- to the gradient ofu, we wish to refer to the gradient of the
tion map in a digitalimage. We show that standard image gray level smooth subjacent image, in as much as we consider be
quantization causes a strong bias in the repartition of orientations, Shannon interpolable. If we assume, which is realistic enough

hindering any accurate geometric analysis of the image. In continu- . .
ation, a simple dequantization algorithm is proposed, which main- thatk andn are isotropic, we are led to address the effect of

tains all of the image information and transforms the quantization the quantizatior®) on the field of orientations. We discovered
noise in a nearby Gaussian white noise (we actually prove that only recently that this effect is strong and leads to a very biased field

Gaussian noise can maintain isotropy of orientations). Mathemat- of orientations. It can hinder any faithful geometric analysis
ical arguments are used to show that this results in the restoration of the image, unless some previous restoration is performed.

of a high quality image isotropy. In contrast with other classical . . .
methods, it turns out that this property can be obtained without Before explaining how we shall address this restoration, let us

smoothing the image or increasing the signal-to-noise ratio (SNR). give an example where this restoration is crucial in order to
As an application, it is shown in the experimental section that, perform a correct geometric analysis in the image. This is a
thanks to this dequantization of orientations, such geometric al- particular instance, but let it be mentioned that all probabilistic
gorithms as the detection of nonlocal alignments can be performed \,athods using local pixel interactions (e.g., Markov random
efﬂm_ently. We also point out §|m|Iar improvements of orientation field models) would suffer, knowingly or not, the same effect
quality when our dequantization method is applied to aliased im- ’ . ' :
ages. We proposed recently a grouping, nonlocal, method for the
detection of alignments in an image. In a few words, the
principle of the method is the following [3]. We assume that
each point in the image has an orientati®f) (equal to the
orientation of the gradient plus/2). We consider a segment

. INTRODUCTION S of aligned points in the image, with lengthLet ©, denote
ET u(z) be a gray level image, wheredenotes the pixel the orientation of this segment. Assume we have obsekved

and u(z) is a real value. Most natural (nonsyntheticPOints onS (among the points) having their orientation equal,
images are generated in the following way: a source imageéxccording to a given precisign to the orientation ofs (i.e.,
is assumed to be of infinite resolution. A band-limited opticauch thatl®(z) — G| < pr). If k is large enough, then we
smoothing is performed os, yielding a smoothed version S&y that the segmerst is meaningful (more details about this
k = s. By Shannon-Whittaker theory, the band-limited imag&ethod are given in the last section). In Fig. 6(b), we show
can be sampled on a regular and fine enough grid. Let @l segments detected in a natural image by this method at
denote bylI the Dirac Comb of this grid. Then is roughly Precisionp = 1/16. It can be visually checked that no detected
obtained as. = (s + k) - I, which yields the discrete, digital S€gment seems to be arufaqual, ie., due.to image generation.
image. According to Shannon-Whittaker Theoremj; can be L€t us now choose a precision of orientatjpn= 1/64. This
recovered fromu by the so called Shannon interpolation, usingrécision may seem exaggerate, but can be successfully used
a basis of sinc functions. Actually, this model is significantly? @ image with strong gradients. Fig. 6(c) shows the detected
idealized, since other operations result in a substantial ima@§¥nments, which are, according to our definition, highly
degradation, namely a white photonic and/or electronic noig@ncasual. Clearly, such detections are artifactual and the result
n, a windowing {1 is not infinite, but restricted to a rectangle)°f image generation. After some inquiry, it turned out that
and, last but not least, a quantizatiéh Thus, the realistic the gray level quantizaﬂon is responsible for such ar_tifactual
image model is: = Q[(k * s) - IL + n], in which we neglect the detect!ons_. Actually, this does not mean that the alignment
windowing effect as affecting essentially the image boundaﬂf?teCt'On is wrong, but only that the detected alignments are
In this paper, we address the problem of computing accuratéfj2de generation artifacts. In Fig. 6(d), we show the result
and in an unbiased way the orientation of the gradient,of Of alignment detection (at precisign = 1/64) on the same
a number € [0, 2x] such thatexp(i) = Du/|Du|, where Picture, after the dequantization we propose here has been

Du = (u,, u,) denotes the image gradient. When we refdterformed. _
Let us therefore come back to the problem of computing a

reliable orientation. The first good answer to this problem is
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abandoned in image generation devices. To summarize, image

isotropy can be restored by dithering to the cost of decreasing X1 X2
the SNR, but this is a degradation and should anyway be per-

formed in the image generation process itself: this is not gener- X3 | X4
ally the case.

A second easy answer, much in use, consists in smoothing
the image by some convolution kernel, and only retaining

the orientation at points where the gradient is high and stable ) ) )
across scales. This is the classical “edge detection” method (di@strous. In Section Iil, we detail the proposed solution and

[2], [10], [15] and, for more up to date methods, [9]). Ther@ake an accurate mathematical and practical analysis of the de-
is nothing to object to this method, since at the end it retaif§@ntized noise. We show that it is nearby Gaussian, therefore
edge points which are very local, though they are confirmed Rgrmitting the local computation of orientations. In Section 1V,

larger scales. Now, clearly, many orientations in the image c4f§ €nd with some experiments.
be used to detect alignments, which are not computed at edge
points: the edge points simply are a particularly good selection!!: L OCAL COMPUTATION OF GRADIENT AND ORIENTATION

but sparse. Another way, addressed recently and successfullwe consider a discrete gray-level imagef size N x M. At
by several authors [12], [14] consists in defining an orientatiasach point, we can compute the gradient onsa 2 neighbor-

scale-space. Also, the affine scale space [1], [13] provideshg@od (we choose the smallest possible one to preserve locality).
way to compute a multiscale orientation of level lines. In alt is defined by

cases, the objective is different and wider than just computing

a local orientation: the aim of these methods is to compute Gn, m) = <U'ac> =1 <X2 + Xy — Xy - X3> 1)

a multiscale orientation map which has to be considered by ’ Uy NN+ XN -X- Xy

itself as a nonlocal analysis of the image. These methods are . .
better than edge maps methods in the sense that they providt\évgﬁr?‘xl = u(n, m), X3 = u(n + 1, m), X3 = u(n, m+1)
orientation at all points. They are all the same not appropriat89-X+ = u(n +1, m +1) (see Fig. 1).

for image analysis models based on local observations (e%_eAmde from a classical finite differences estimate of the gra-
t

Fig. 1. Four pixel values used to compute the discrete gradient.

most probabilistic methods), as well as the one we outlin nt ofw, (1) can be |[1t.erprete.d. as the exact grad}én(?m +
before. Indeed, they do not preserve the independence of po %’ m+1/2), whered is the bilinear interpolate af defined
at Nyquist distance. n, n+1] x [m, m + 1] by

The solutlon.we propose in o'rder to deq'uantlze' the Image, .y = (y — m)((z — n) X4+ (1 — & +n)Xs)
should, according to the preceding discussion, satisfy the fol-
lowing requirements: (A -y +m)((@ —n)Xz + (1 -z +n)Xy).

. ma_intain the “independence” of local observations (i.e., no From (1), we writeR =
smoothing);

e maintain all of the image information (thus the method Uy + iu, = Rexp(if). 2)
must be invertible);

¢ give an unbiased orientation map, where quantization noilete thaté is not defined whenk? = 0. Our aim will be to
has been made isotropic. study the behavior of as a function of the four valuek,, X,

We shall actually prove that a simple and invertible opera¥s, andX,. The question is to decide whether such a way of
tion, namely a Shannon (1/2, 1/2)-translation of the image, peemputing the orientation is valid or not (i.e., whether it gives
mits to remove the quantization effects on the orientation magnme privilege to particular directions or not). In this section, we
More precisely, we shall prove experimentally and mathemagirove that if the image: is a Gaussian white noise, then there
cally that this translation transforms the quantization noise intésano bias on the orientations (this means that, at each point,
nearby Gaussian white noise. We shall also prove that all reasalh-orientations have an equal probability), and that, ifs a
able local computations of the gradient, applied to the dequasmiform white noise, there is a small bias (orientations multiple
tized image, yield an unbiased orientation, even at points whefer /4 are slightly favored).
the gradient is small. This remains true even when the quantiza-
tion step is large. As a consequence, we point out the possibilfty Gaussian Noise
of performing the geometric analysis of an image with a very we first show that if the image is a Gaussian white noise,
local estimate of the gradient, using therefore the full image agren there is no bias on the orientations.
curacy. Proposition 1: Let Xy, X, X3, andX4 be independentiden-

Our plan is the following. In Section I, we consider a widgically GaussianV'(0, o) distributed random variables. Thén
set of classical local computation methods for the gradient arduniformly distributed ono, 2x].

show that they preserve an excellentisotropy, under the assump- Proof: The first point is to notice that if we denoté =
tion that the image noise is uniform or Gaussian. We also proxg, — X; andB = X; — X4, thenA andB are independent and
a converse statement: the image orientation will be isotropic,if, — (A - B)/2 andu, = (A+ B)/2. Thus, from (2)

and only if the noise is Gaussian. We analyze the bias introduced

by quantization and show that its effect on orientation can be A+iB = RV2-expli(f —7/4)]. (3)

In

|G| and define the orientatiof by
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Now, A is Gaussian with mean 0 and variarie® because it
is the sum of two independent Gaussian random variables (with o}
mean 0 and variance?). And B is also Gaussian for the same
reason. Sincel and B are independent, the law of the couple
(A, B) is given by the density function

1 CL2 + b2 0.08}
fla ) = oy exp<— e )

which shows tha# is almost surely defined. Last, singdeis

isotropic (it only depends on the squared radifis+ %), we

deduce that the distribution éfis uniform on[0, 2x]. O = = = o T 2 s
Proposition 2 (Converse Proposition}et X;, X», X3, and

X4 be four mdependeljt identically d'_smbUted random VE_“onmparison with the uniform distribution dr-7, =] (dotted line).

ables. Assume that their common law is given by a probability

density f, where f is square integrable and even. If the law

of ¢ is uniform on|0, 2x], then the probability density is B. Computation of Orientation on Nonquantized Images

Gaussian. In this section, we address the effect on the orientation his-
Proof: As we did in the proof of Proposition 1, we denotgogram of applying the former described computation of the

A=X;-XsandB = X; — X,4. AandB are independent gradient. We shall see that the bias introduced by the method

and identically distributed. They have the same density funig-small. It is not always realistic to assume that the local repar-

tion g given by the convolution of — f(x) with itself, i.e., tition of the gray levels of an image is Gaussian. Instead, we

g(z) = 727 f(z —y) f(y) dy. Sincef is square integrable, the can roughly assume that the values at neighboring points differ

functionz — g(x) is continuous. We also notice thet0) = by a uniform random variable. Thus it is licit, or at least very

J f?(y) dy # 0 (becausd is a density function). Since the lawindicative, to compute the orientation map of a uniform white

of #is uniform on[0, 27], we know that the law ofA, B), given noise, in order to have an estimate of the bias on orientation

by the densityy(x)g(y), only depends or? + »*, which can provoked by this gradient computation. Let us therefore per-

be writteng(z)g(y) = g(v/2? +»?)g(0). In addition,g is even  form the computations in the following framework: consider an

and never vanishes since it is a continuous function such thatge whose values at pixels are independent random variables,

g(0) # 0 andg(z)? = g(zv/2)g(0). Hence, we can consideridentically uniformly distributed onf(1/2), 1/2]. We then get

the functiong defined forz > 0 by g(z) = In(g(1/x)/g(0)). a small bias on the orientatigh More precisely, we have the

Then, we get for alls, y > 0, g(z +y) = g(x) + g(y). following proposition (the proof is given in the Appendix).

Sinceg is continuous ang(0) = 0, this shows thaj is linear. Proposition 4: Let X;, X,, X3, and X, be independent

Consequently, there exists € R such that for allz in R, random variables, identically uniformly distributed on(lL/2),

g(z) = g(0) exp (—2*/20) where the consta{0) is defined 1/2]. Then the law of¢ is given by the density functio,

by the property/ g = 1. Thus, the law ofA (and alsaB) is the 7 /2-periodic and whose restriction fe-r/4, 7 /4] is

Gaussian distribution'(0, #2). We now prove that the law of

the X, is also Gaussian. Singe= fx f, considering the Fourier 1 2 (T Ul

Transform, we ge§(t) = f(t)2 = Cexp (—t262/2). Thus, f ) =1 (1 +tan (Z B |9|)) (2 ~tan (Z B |9|))

is Gaussian. Since the inverse Fourier transform of a Gauss&'an

distribution is also Gaussian, it shows tlfds the Gaussian dis- see Fig. 2) , . . .
tribution with mean 0 and variance /2. Proposition 4 shows that if the pixels of the image have inde-
B ndent uniformly distributed values, then the orientations are

This result has a strong practical consequence: if we wiSf . 7 . .
9P d rbot uniformly distributed. The law of the orientatiéris given

to have a nonbiased orientation map for digital image, XQ’F- 2 It sh that the orientati ltinlerofd f
must process the image in such a way that its noise becomes ig. 2. It shows that the orientations multiplerf4 are fa-

as Gaussian as possible. We shall see that it is feasible V\)fﬂ{ed' If we want to measure the bias, we can compute the rela-

quantization noise. tlye deviation from the uniform distribution qF_Hr, 7]. We get
The following proposition is the generalization ofPropositiorL?laLS = 27 X axg |_g(9) —1/27] = 0'(347' This shows, how-
1, when the gradient is computed on a larger neighborhood (ﬁ]\éer, that the bias is small, about 4.7%.
proof of this proposition is given in the Appendix).
Proposition 3 (Generalization)Assume that the com-
ponents(u,, u,) of the gradient are computed on neigh- We saw in the previous section that the way we compute the
boring pixelsX;, X, ..., X, i.e.,u, = > ., AX; and orientation at a point of the image from the gradient does not
u, = >, 1iX;, where); and p; are real numbers suchcreate artifacts. Now, on the contrary, we will see that the his-
that>" | A = 0andd> A2 = >0 42, If the X; are togram of orientations in the image is very sensitive to a quan-
independent identically Gaussiaxi(0, o) distributed, then tization of gray levels. Let us first consider the simplest case:
the angled is uniformly distributed orf0, 2x]. a binary image. We assume that the gray level at each pixel is

0.02F 1

ig. 2. Law of & on [—=, x] when the image is a uniform noise, and

C. Bias of Quantization
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Fig. 3. Probability distribution of for —7/2 < 6 < =/2, when the gray levels are respectively uniformly distributedn1, ..., 5} (left figure), in
{0, 1, ..., 8} (middle figure) and in{0, 1, ..., 256} (right figure).
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0 (black) or 1 (white). Then, the orientatighof the gradient the number of gray levels is = 6, n = 9, andn = 257.
only takes a finite number of possible values: the multiples @hese three cases correspond respectively-tol prime, and
7 /4. The binary case is an extreme case. Let us now consider 1 of the form2?. Equation (4) shows that the probability
the case of an image quantized on a finite numbef gray distribution of B/A is directly related to a known problem of

levels:{0, 1, 2, ..., n — 1}. Again, we denotel = X, — X3 arithmetic: how many distinct irreductible fractions of the form
and B = X; — X4. Then A and B have discrete values in b/« can you make with the constraiot< b < a < N? This
{-n+1,...,-1,0,1,...,n—1}.If A= B =0,#isunde- problem has already been addressed, in a very similar way, in

fined. If A =0andB # 0, thend = —w/4 orf = 3w /4. Inthe some papers of Lopez-krale¢ al. (see [7] and [8]) for the de-
other cases, we haven(# — 7 /4) = B/A and consequentl§ tailed study of the effects induced by lattice quantization on the
only takes a finite number of values. histogram of the slopes of straight lines joining two points of
Let us compute the distribution law 8fwhen the image is a the lattice. The main difference with our study is that we have
uniform discrete noise (i.e., th¥; are independent and for allin addition a probability distribution on the valuesoandb.

kin{0, ..., n—1},P[X,; = k] = 1/n). First, we compute the  Most quantized images are not binary images, but the effect
probability distribution ofA (and B) of quantization on the computation of the gradient orientation is
always very significant. The reason for this is that in an image,
Vke{-n+1,...,n—1}, there are usually many “flat” regions. In these regions, the gray
n—1 . o on—|k| levels take a small number of values, and consequently the ori-
P[A=Fk] = Z P[Xz=j]-P[Xa =k +j] = — -  entation is very quantized.
7=0

[ll. ORIENTATION DEQUANTIZATION
Hence, with probability /n?, A = B = 0 andf is not defined. Q

Let us now compute the probability distribution B 4, when A. Proposed Solution: Fourier Translation
A # 0. For each possible discrete valy: € Q (with a andb  We assume that the original signal (before quantization) is a
mutually prime) ofB /A, we have Shannon signal (i.e., we can reconstruct the whole signal from
the samples). We denote this signal bif it is a one-dimen-
P[B/A=1b/a] = Z P[B =Xb]-P[A= Xa]. (4) sional (1-D) signal and by: if it is a two-dimensional (2-D)
ez~ image

In particular, we can compute the probability of the event . o _
7 /4 (it corresponds to the eveBt = 0 andA > 0). Notice that, (=)= Z s(k) - sinc(r(z — k)
thanks to symmetries, this probability also is the probability %Ind

th t9 = —7/4, 3r/4 or =37 /4. Wi t
e even ™[4, 3m/4 or =3n/ e9e w(z, y) = Z w(k, 1) - sinc(w(z — k)) - sinc(w(y — 1)).

keZ

n—1 k,lcZ
Pl§ =n/4= > P[A=d] -P[B=0] o . .
o Thesinc function is classically defined byinc(z) = sinz/z,

n-1 3 1 with the convention thatinc(0) = 1. Now, we do not know the
= Z nTae 712— exact values of the(k) [resp. of thew(k, [)]. We only have the
T
a=1

2

" guantized signa¥b (resp.l/). Thus, at each point,
Moreover, we have s(k) = S(k)+ Xy, or u(k, 1) =U(k, 1) + Xy,
wI[7T
Vael, a#f [5} ; Pl@=a]<Pld=mn/4] where X, (resp. X ;) is the quantization noise. In the fol-

lowing, we assume that th&; (resp.X,;) are independent,
This shows that the orientations multipleof4 are highly fa- and uniformly distributed on-{(1/2), 1/2]. This independence
vored. In Fig. 3, we plot the probability distribution 6fwhen assumption is correct above the Nyquist distance.
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osf

Fig. 4. Left: distribution ofY; and comparison with the Gaussian distribution with mean value 0 and variance 1/12 (dotted curve). Right: distribGtiamdof

comparison with the Gaussian distribution.

The proposed solution for dequantization is the followinghere theX,, (resp. theX,, ;) can be assumed, in a first approxi-
one. We replace the quantized values of the sigifal) by the mation, to be independent and uniformly distributed-e(il]/2),

Shannon interpolate$(» + 1/2) and obtain 1/2].
_ Let us introduce some notations. Foe Z, we set
SGH3>:§:5m+kﬁE@9£:£D (—1)*
2) " & (12— k) S ) 6)
m(1/2 - k)
= Z s(n + k) m—z ntk m We th_us haved; = Zk_ez cka_andY} = Zk,lez cnci Xk, 1.
kez ke If X is a random variable uniformly distributed or-(1/2),
_ 1 - (=" 1/2], then the mean and the varianceXfare £(X) = 0 and
=s|n+2 _Z‘X"‘H“—' S . o o
2 = m(1/2 — k) var(X) = 1/12. Since}_ ¢; is convergent (it is equal to 1),
the random variable series (5) definityfg andY; are conver-
For the quantized imagé(n, m), this formula becomes gent in L?, and we moreover havB(Y;) = E(Y>) = 0 and
var(Y;) = var(Yz) = 1/12. The variance ot} (and ofY2) is
Un+3,m+3)=uln+3 m+3) the same as the variance &, (this can also be explained by
(—1)k (—1) the fact that the Fourier 1/2-translation is an isometrj;9fand

- E X1 Xyt : - thus, we do not reduce or enlarge the variance of the noise.
m(1/2—k) #(1/2-1) ; S
k, 1€z In Fig. 4, we show the distributions &f andY-. In the same
figure, we plot the Gaussian distribution which has mean 0 and

Remark: For a finite image of sizé¥ x IV, we have variance 1/12. These probability distributions seem to be very

N1 close. We shall measure this. We also notice on this figure that
u(z, y) = Z w(k, 1) - sincg(m(z — k)) - sincg(n(y — 1)) the distribution oft; looks “more Gaussian” than the onelqf.
k., 1=0 This can be qualitatively explained by the Central Limit The-

orem and by the fact that a larger sum of independent random
wheresinc, is the discrete version of thénc function, defined variables is involved in the definition dfs.

by sincy(t) = sin(t)/(N tan(t/N)) (with the convention that 1) Kurtosis Comparison:One way to compare the distribu-

sincg(wt) = 1 fort = 0[NV]). tion of Y7 andY5 to the Gaussian distribution is to compare their
fourth-order moment (notice that they have already same mean
B. Study of the Dequantized Noise 0, same variance 1/12 and same third-order moment 0). More

By the dequantization method, we aim at replacing the stryecisely, we will now compare their normalized fourth-order
tured quantization noise by a noise as Gaussian as possible.p@gnent (called the kurtosis, see [11]). _
will see that, the Shannon translation being an isometry, we ddPefinition 1 (Kurtosis): The kurtosis; of a random variable
not reduce or enlarge the variance of the noise. Thus, we canith meanE(X) and variancear(.X) is defined by
already claim that the method is at any rate harmless. We can

e S Ay b : _ E[(X - E(X))Y
of course reconstruct the original digital image by the inverse K= X2 .
translation. var(X)
Our aim in this subsection will be to study the dequantized A classical result is that any Gaussian distribution has a kur-
noiseY; (in 1-D) andY> (in 2-D) defined by tosis equal to 3 (it is independent of the mean and variance).
N We will now compute the kurtosis of the distributionsiafand
n=% (-1 X, Y». This is a very useful way to check whether a distribution is
= m(1/2 —k) Gaussian like.
and Proposition 5: Let x; be the kurtosis of; and ks be the
(—1)* (—1)! kurtosis ofY>, then
Vo= Y X1 (5)
k,leZ 7T(1/2 - k) 7T(1/2 - l) K1 = % =26 and ks = % ~ 2.87.

Authorized licensed use limited to: Telecom ParisTech. Downloaded on February 9, 2010 at 12:46 from IEEE Xplore. Restrictions apply.



1134 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 11, NO. 10, OCTOBER 2002

Proof: One way to compute the fourth-order moment of Proposition 6: We have the following estimates:
Y7 is to compute its characteristic function, denoteddoy,
(which is defined as the Fourier transform of the probability dis- | fr = gllrr <0.07 and |[[f2 — gz <0.02.
tribution ofY;), and then to compute the fourth-order derivativ
of &y, at 0. We first compute

Oy, (t) = B[] = [ B[] = [] o(ert)

kCZ kCZ

‘?he proof of Proposition 6 is given in the Appendix. It combines
exact inequalities and numerical estimates.

C. Posterior Independence

In our study of the dequantized noise, we made the assump-

n that theX (resp. theX; ;) are independent and uniformly

€ distributed on £(1/2), 1/2]. Here we address the problem of
the posterior independence of the dequantized noise, i.e. for ex-

< ) ample if we consider the dequantized noi§eat two different

where® is the characteristic function of the uniform d|str|but|or}IO
on [—(1/2), 1/2], which is given byb(¢) = sinc(¢/2). Conse
quently, we get

Dy, (¢ H sinc

@) pointsn andm

kez
For z close to 0, we have the Taylor expansionc(z) = 1 — Yi(n) =3 aXopr and Yi(m) =) cxXop
(z2/3!) + (z*/5!) + O(z5). Thus, fort close to 0, using also ez ez
the Taylor expansion of thieg function, we get we are then interested in the correlation}a{x) andY; (m).
2 44 44 The result, which shows that we do not increase the correlation,
log @y, (t) = —— S2 + —— Sy — == S4 + O(t%) is given by Proposition 7. We recall that the correlation coeffi-
6 120 72 cient of two random variable¥ andY is defined by
whereS; = Yorezlar/2)? andSy = Zkez(ck/z)f. Finally, E(XY) — B(X)E(Y)
since forz close to 0, we have the Taylor expansiem(z) = p(X,Y) =
14+ax+22/2+ O(a:?’), we get var(X)var(Y)
1 #4 # For simplicity, the following proposition is stated and proved for
Fit)y=1- g 52 +5 2 36 5 - 180 Si+O(t%). the dequantized noisd . The result fory; is the exact analogs.
_ Proposition 7: Let the X, for k& € Z, be random variables
The fourth-order moment df; is then, uniformly distributed on £ (1/2), 1/2]. Assume that for al

Z, the correlation coefficient betweety, and X; s is the same
forall £ € 7, and let us denote it b§s. Then, the correlation

On the other hand, we can compisteand S, using Bernouilli - coefficient betweeryy (n) andYi(m) is p(Y1(n), Y1(m)) =

numbers and the zeta function (see [4] for example), and get—»- In particular, this shows that if th¥), are independent,

Sy = 1/4 and S, = 1/48. Finally, we obtain the;? the correlation coefficient df;(n) andY;(m) is 0 when
n m.

122 = 2 Proof: Since, for allk, we haveF (X, ) = 0, this implies
that E(Y1(n)) = E(Y1(m)) = 0. We also have, for alt € 7,

In the same way, we can compute the fourth-order moment\Q{r(Ak) = 1/12 = var(Yi(n)) = var(Y;(m)). Thus, if we

E(Y) =oP(0)=24- (4 57 - & 54).

EYfH =22 and k=25

= Ek 1k X, 1 compute the “posterior” correlation coefficient, we get
2
4 1 Ci.Cy 2 1 CrCl 4 (Yi( ) _12 Z Z ckclE ‘Xk-l—n*Xl—{—n))
E(Y) =4l | = | D (—> -— > (—) KEZ IcZ
72 T 2 180 Ty 2
e e = Z Z s Cspm—n-
E(Y3) :24'(% Sy — 180 54) = %' bt ket
. . . . 7* =
The variance o¥ is also 1/12, and thus the kurtosig of Y5 is For & €  We have) g Crerts 0. On the other
hand, for6 = 0, we already saw tha}", , ¢ = 1.
Ky = 192 — 43 < 9 g7 Notice that these properties of the, are explained by
2160 15 — =0

the fact that the 1/2 Fourier translation is an isometry

O of L2. Finally, we obtain the announced result, which is

2) Estimating the L! Distance to the Gaussian Dis-p(Y1(n), Yi(m)) =3, c7 G2Cm—n = Cnn. u
tribution: Let f; (resp. f2) be the probability density of
Y: (resp.Y2), and letg be the Gaussian distribution withD- Flat Regions Model: Final Explanation of the
mean O and variance 1/12. In Fig. 4, we noticed that thequantization Effect
probability densitiesf; and f> seem, on the average, to |etus summarize. We had written the “dequantized” signal
be very “close” to the Gaussian distribution The aim gg
of the following proposition is to give upper-bounds for X
the L! distances|fi — gll;r = [glfi(z) — g(z)|dz and g <n+ 1) < ) Z BT G L
I1f2 = glles = [l fa(e) — g(a)| da. 2 1/2 k)
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wheres(n + 1/2) is the original signal computed by Shannomeplace the quantized valugn), by the Shannon interpolate
interpolate at points + 1/2, S(n + 1/2) is the dequantized S(n + 1/2), and then, we compute the gradient by

signal at the same point arid(n) = >, 7 cxXnyx is the

so-called “dequantized noise.” We have proven thgn) is S(n+1/2)—S(n—1/2) = Z [Stn+k)—S(n+k—1)]ck.
nearby Gaussian. Since in Proposition 1 we also prove that the kCZ

addition of a Gaussian noise to the signal does not create
bias in the orientation map, we might be satisfied with this r
sult. Now, we claim that the above explanation does not give
account of the change in the orientation histogram obtained )
dequantization. Indeed, we prove in Proposition 4 that the ad
tion to the signal of a uniformly distributed noise on an interv
does not create a bias on the orientation larger than 4.7%. Thu
something must be inaccurate in our assumptions. Actually, we 7 Z 0
notice that when the gradient sis small at a given point, then kK
the quantized values of(n) around this point are a very dis-
crete signal. In other terms, assuming for simplicity that thighere the, are independent discrete random variables, taking
pointis 0 and that(0) = 0, we have thab (k) = s(k) — X3 € the values 0, 1, or-1, each one with probability 1/3. Then

{0, 1, -1, 2, =2, ...} where the first integer values are veryfollows the same probability distribution as

majoritary. This means tha{k) and X;, are highly correlated

when the gradient is small. Thus, our model (8) explaining the T3 = Z 3 Xy

good behavior ofS(n + 1/2) = original signaH ~ Gaussian k23]

noise= s(n + (1/2)) + Y (n) will make sense only if we can _ ) o

point out that the dequantization process impli€») and where the X; are independent, uniformly distributed on
s(n+1/2) decorrelated. Now, using the same proof as in Propb=(1/2), 1/2]. Thus, for alb < b, Pla < Z < 8] = Pla <
sition 7, we can show that this is not true. In fact, more preciseﬂ]? <b ] . .

by this result we have(Y (n), s(n + (1/2))) = p(Xn, s(n)) Infact, 73 is ne_arb_y Gal_JSS|an. In part_lcular, we haye a _near_by
under the sound assumption of stationarity. Thus, we gaingﬁrfect dequantization since the previous proposition implies
lose no independence of the signal and the noise obtained by &t for alla < b, thenPla < Z < 8] > 0.

quantization. The final explanation will however arise from the 1h€ previous proposition can be extended to the case of a
technique developed above. We first point out [see Fig. 5(c) ahd® image in the following way. Let/ denote the quantized
(d)] that all the bias in orientation histogram is due to low valud@129€. Using the same notations as in Section Il, the gradient of
of the quantized gradient, nameWu| < 4. The reason for this ¢/+ before the 1/2-translation, has componeatand 5 [in the

is the following: at a poin{z, ¥) of an image where the gra- referential defined by théx, y)-axes rotated byr/4], where
dient is large, the orientation is not much affected by the quanﬁ n,m) = Uln +1,m+ 1) —U(n, m) and B(n, m) =
zation. In fact, the angle error between the “true” orientation &% ™ + 1) — U(n + 1, m). After 1/2-Shannon translation,
the point and the orientation computed after the quantization'¥f obtain

the image is proportional tb/|Vu|. Let us show this. We denoteA (n+ L m+1)
by u the original image, theNW v = u, + iu, = |Vu|exp(i6), 2’ 2

wheref is the direction of the gradient. Létdenote the quan- = Z calUn+k+1, m+1+1)—-Un+k, m+1D)]
tized image, and lef denote the quantization step flflenotes k,1CZ

the direction of the gradient of the quantized image, we obtain (n + %’ m 4+ %)

Vi = |V exp (i6) = |Vu| exp (i8) + 2, wherez is a complex

numbe|zr (it|représe?nts |the |gradi(en'z of the difference between the > aalU(n+km+l+1) = Un+k+1,m+D)]
true image and the quantized image) with modulus smaller than holct

g. Thus, we gefsin(6 — 6)| < g¢/|Vu|. This shows that the now if we define forallk, 1 € 7, Q2 , = U(n+k+1, m+1+

points where the gradient is large are not much affected by tp)e_U(nJrk m-+1)andQE , = U(;;ik_ el 1) Un ket
quantization effect. ) k1 )

: ! , o 1, m+1)], we may assume that in flat regions all these variables
_The points with small gradient are majoritary [about 60%, Sege independent. Then, we can prove an analogous result as the
Fig. 5(b)] in the gradient norm histogram. Thus, we must fOCy,q given by Proposition 8. More precisely, we can prove that

on the points wheré/2 < [Vu| < 4. We notice thatin aneigh- 4 44 g after translation have both the same nearby Gaussian
bprhood Of_SUCh a point, the histogram of va_Iues ﬁ_;f(k) area gistribution, which is the one of the random variabledefined
discrete uniform process centeredSat. ). Taking, without lost

of generality,S(n) = 0, we can model the values around these

points as discrete independent random values. See Fig. 5(e) and Ty = Z 3epci Xp 1
(f) for the histogram and correlations. In flat regions, the gra- '
dient is quantized on a small number of values and we will see
that the proposed Fourier translation has a strong dequantizdtere the X, ; are independent, uniformly distributed on
tion effect. LetS denote the quantized signal. At a pointwe [—(1/2), 1/2].

Zr?)flat regions, we can assume that the differefice) — S(n —
(JiP]takes a small number of discrete values. For example, if we
sume that it only takes the values 0, 1-dr, then the fol-
wing proposition shows in particular théitn+1/2) — .S(n —

/2) is no longer quantized.

Eroposition 8: Let Z be the random variable defined by

kczZ

k, 1£2[3]
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Fig. 5. Empirical observations on histograms and correlation. First row: left, the original image; right, histogram of the norm of the gradiehto®elsit,
histogram of the gradient orientation for all points of the image; right, histogram of the gradient orientation for points with gradient norhalaérttird row:
left, local histogram (window of size & 3) of u(x) — u(x,) for pointsz, such thafVu(zs)| < 3; right, correlation coefficient of(xo + d) — u(z) and
u(ro — d) — u(xo) as a function of the distaneg for pointsz, such tha{Vu(zq)| < 3.

IV. EXPERIMENTS AND APPLICATION TO tion of alignments in an image. In [3], we proposed a statis-
THE DETECTION OFALIGNMENTS tical criterion for the detection of meaningful alignments in an
image. At each point of the image (with si2éx ), we com-
In this section, we present some applications of the propogaate an orientatio®(x) which is orthogonal to the gradient
solution for dequantization. The first application is the deteeat the considered point. Then, we consider a segrfiéntthe
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Fig. 6. Effect of quantization on the detection of alignments. First row: left, the original painting image, quantized on 32 gray levels, riglanitigfuhe
alignments for precisiop = 1/16. Second row: left, the meaningful alignments for precigica 1/64; right, the meaningful alignments for precisipr= 1/64,
after (1/2, 1/2)-translation.

image made of points at distance 2 (thus, the gradients amometimes, we are interested in alignments at a better preci-
computed on neighborhoods that do not intersect, and we thesien, say for example = 1/64. In Fig. 6, we first present the
fore make the assumption that they are independent)k bet original image (upper left): this is a result of the scan of Uc-
the number of points (among tlig which have their orienta- cello’s painting: “Presentazione della Vergine al tempio” (from
tion aligned with the direction of the considered segment, tite bookL'opera completa di Paolo Uccell&lassici dell’'arte,

a given precisiorp [i.e., such that®(z) — ©¢| < pm, where Rizzoli). This image is quantized on 32 gray levels. We first
Oy denotes the orientation of the segméit The probability compute (upper right) the meaningful alignments at precision
of observing at least such points on a lengthsegment is p = 1/16. Then, we compute (bottom left) the meaningful
Pk, 1) = Eé’:k (]l.)pj(l — p)'=7 (because of the assumptiomalignments at precisiop = 1/64: it shows many diagonal
that the orientations are independent and uniformly distributaignments. These alignments are artifacts, their explanation is
on [0, 2x]). When this probability is very small, the event ighe quantization effect on the computation of orientations: direc-
highly noncasual and therefore meaningful. Generally, we cotins multiple ofr /4 are highly favored. Last, we show the de-
pute meaningful alignments with the precisipr= 1/16. But, tection of meaningful alignments at precisjps- 1/64 (bottom
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Fig. 7. Effect of the Fourier translation on an aliased image. First row: left, the aliased image; right, the image after (1/2, 1/2) FourientrSeskatid row:
left, the histogram of the gradient orientation in the aliased image; right, the histogram of the gradient orientation after translation.

right), after the proposed solution for dequantization: (1/2, 1/2) given by the convolution of the characteristic function of the

Fourier translation. The result shows that artifactual diagonaterval [—(1/2), 1/2] with itself, that ish(z) = 1 — |z]| for

alignments are no longer detected. |z] € 1, andh(z) = 0 otherwise. Now we compute the law of
We also noticed (but we have no theoretical argument to jus-= 6 — «/4, knowing from (3) thatB = Atan(«). Thanks

tify it) that the same method yields a significant improvemenid symmetries, we first consider the casel « < 7 /4. The

in orientation map of aliased images: see Fig. 7. This is partiadistribution function ofx is F'(«) = P[0 < B < Atan ¢f, that

larly true for aliasing due to direct undersampling, a barbaric bist

usual zoom-out method in many image processing softwares.

APPENDIX Fla) = /;_0 </y:ana(1 ) dy) (1-2)dz.

Proof of Proposition 3: Every linear combination of, and Hence, the law ofr € [0, 7 /4] is given by the density function
u, is Gaussian because itis also a linear combination akihe

which are independent and Gaussian distributed. Thus u, ) fla) =F" (1@)
is a Gaussian vector. Sin¢g A\;;i; = 0, this implies that the _ 9 _ _
correlation between,, andu, is 0. Sincgw,, u, ) is a Gaussian A (1 +tan” @)(1 — ztan a)(1 — z) do

vector, this shows (see [6] for example) thatandw, are in-
dependent. Moreover, the propeffy A7 = > uZ shows that
u, andu, are Gaussian with same mean and same varianEénally, sincea = ¢ — % /4 and by symmetries, we obtain the
Finally, as in the proof of Proposition 1, the law of the couplannounced law foé.

(uz, uy) is given by a density functioffi(z, v) which depends  Proof of Proposition 6: The c; are symmetric around/2,
only on the radius? + y* and not on the anglé. Thus,f is i.e.,c;_x = cx. Thus, we can writ&” = > ws1 (Xt X))

=24 (1+tan® a)(2 — tana).

almost surely defined and uniformly distributed [@n 2]. Let us denote

Proof of Proposition 4: We use the same notations as in the "
proof of Proposition 1. The random variablds= X, — X3 Z, = Z en(Xp 4+ X1_x)
andB = X; — X, are independent and have the same density =
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and letf,, be the probability density of,,. We then have,, = the convolution into a product). Lt (¢) denote the Fourier
fa—1 * hy, Whereh,, is the probability density ot,(X,, + transform of}_, cxX). From (7), we know that
X1_»). We first prove the following proposition.

Proposition 9: For alln > 1, we have Fo(4) — e (Y = - ¢
1(2) kl;[ZSlnc 5 kl;[ZsmC TOE=D))
IF = gllee < U= glle + 55 llg"lee D <. _
kzntl We denote byF;(t) the Fourier transform of _, 3ciXx. We

then havel;(t) = Fi1(3t). On the other hand, the Fourier trans-
form of d(x) is (1 + 2cost)/3. Thus, if we denote by (¢) the
Fourier transform of the law o}, ¢ Qx, we have

Proof: Forn > 2, we havef,, = f._1 * h,,, Wwhereh,, is
the probability density ot,,(X,, + X;_,,). We notice that,
is a positive even function, with compact suppp#tc,|, |c.|]

and satisfyingf h,, = 1. Thus 1 4 2 cos(cyt)
oo 1123
o = gl S| fam1*hn — g % hallor + [lg % hn — gl kez
<|fner = gller + lg* hn — gll 1. where in both cases the convergence of products is uniform

) . on every compact subset &. Since} , c.(Qr + Xi) has
We now computdlg /i, —g|| 1. Forz € R, using the definition e same probability distribution 88, 3X}, this shows that
of g x h,, and the integral Taylor formula, we get.,.(y) being G(t)F.(t) = Fs(t) for any realt. We now show that there
odd exists a continuous functio; such that for all, F5(t) =
g% hn(x) — g(2) Fi(t)H,(t). In fact, we ha\_/ng(t) = _chz sine(3t/w(2k — _
" lenl L 1)), f_;\nd we decompose this product into two products: the first

_ / v </ (1= H)g"(x + ty) dt) hn(y)dy. ON€is the product over ali such that: 7 2[3], and the second

—len] 0 is for all & such thatt = 2[3]. Now, for & = 2[3], we can write
k = 3k — 1, and thus3/(2k — 1) = 1/(2k" — 1). This shows

Then, we can estimate tHg distance, and obtain that
% hn _ < 1 " 2. 3t
lg llzr < 1z 9" v e 11 Sinc( - 1)) — R
. .. . ™ -
We add these inequalities and thus obtain the announced k=2[3]
result.

Using the previous Proposition, in order to have a nume"jrl—nd consequently, we hat@(t) = I, () Hu(#), where

ical estimate of|f — g¢||, we can use a computational soft- ) 3t
ware to compute numerically the first ternfis, fa, ..., fio, Hi(t) = H SHIC 72k — 1)
... and on the other hand compute an upper-bound for the tail k#2(3]

19”1 ks w41 Ci- We first computd|g”|| 1. Forz € R, W& and it may be shown thdf; is continuous oiR. Thus, we have
haveg”(z) = (#?/0" — 1/0®)g(x), whereo® = 1/12isthe for all ¢, G(£)Fy(t) = Hi(t)Fi(t). Since the zeros o are
variance ofy. Thus, using an integration by parts and the Propefiscrete, andy and H, are continuous, this shows that
ties [ g = 1 and [pag(x) = o, we get||g”|| = 4g(0)/0 <

12. Then, we compute the rest of the sdmez, using a com- VteR, G(t) = Hy(t) = H sinc < 3t ) .

parison with an integral, and g®t, . ., ¢f < 1/7°N. Thus, e m(2k — 1)
we obtain
1., ) 1 And thus,Z = >, ¢, Qx has the same probability distribution
LA Y oas =N asy "y 3cxXx. Moreover, thanks to Levy Theorem, we have
kzN+1 a convergence in law of the partial su@:m@ cxQr toT3.0

We can now compute an upper-bound for fledistance be-
tween the density function af and the Gaussian distribution.
We can also do this in a similar way for the random varidble  The authors would like to thank R. Lau for his personal
(dequantized noise in dimension 2). The numerical estimaiagerest and encouragement. They would also like to thank
given in Proposition 6 are obtained using Proposition %fes  B. Rougé for his valuable suggestions and comments.
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