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Abstract—We propose a method to segment a 1D-histogram underlying data density. Among them, bi—level or multi-level
without a priori assumptions about the underlying density thresholding methods, such as [1], [7], [18], [22], divide the

function. Our approach considers a rigorous definition of an pisiagram into several segments by minimizing some energy
admissible segmentation, avoiding over and under-segmentation . = .
criterion (variance, entropwgtc..).

problems. A fast algorithm leading to such a segmentation is ) i )
proposed. The approach is tested both with synthetic and real  In all cases, the number of modes in the final segmentation
data and an application to the segmentation of written documents must be estimated. This number can be speciéiedriori
is presented. We shall see that this application requires the gand becomes a method parameter. It can also be estimated if
detection of very small histogram modes, which can be accurately i1 5 priori distribution is hypothesized. The selection of this
detected with our method. . . . .
parameter is crucial since a wrong choice leads to an over or
Index Terms—SEG-STAT, OTH-DOCU under segmentation of the data. Generadly,hocprocedures
are used to estimate the actual number of modes.
Other non-parametric approaches (for instance, mean shift
[9]) find peaks (local maxima) of the histogram without
Histograms have been extensively used in image analysistimating the underlying density. These methods tend to
and more generally in data analysis, mainly for two reasongtect too many peaks in histograms coming from real noisy
they provide a compact representation of large amounts d¥ta. Some criterion is therefore needed to decide which of
data and it is often possible to infer global properties of these peaks correspond to true modes ([25]). Indeed, one of
data from the behavior of their histogram. One of the featurése main challenges of histogram analysis is the detection of
that better describes a 1D-histogram is the list ofnitsdes small modes among big ones (see, for example, Fig. 3).
i.e. the intervals of values around which data concentrate. Foran different approach has been recently proposed in [14].
example the histogram of hues or intensities of an imag®e authors propose to fit the simplest density function com-
made of different regions shall exhibit different peaks, eagiatible with the data. Such a method is globally convincing
one of them ideally corresponding to a different region in theut the choice of the data-compatibility threshold is not
image. In this case, a proper segmentation of the image carféenalized, only justified by experiments.
obtained by computing the appropriate thresholds that separat¢he |imitations observed in the previous methods have
the modes in the histogram. However, it is not always easy figotivated the development of a new non-parametric approach,
quantify the amount of “data concentration” in an interval, angbust to small variations in the histogram due to the limited
hence to separate modes. number of samples, and local enough to detect isolated small
Among the algorithms proposed for 1D histogram segnodes.
mentation, we can distinguish between parametric and nonin the following section the theoretical framework of the
parametric approaches. The first ones (see [13]) assume ghgposed approach is described in detail. Several tests are

set of data as samples of mixtures fofandom variables of displayed in Section Ill, with applications to document seg-
given distributions, as in the Gaussian Mixture Models: 1§ mentation.

known, optimization algorithms such as the EM algorithm [11]
can estimate efficiently the parameters of these distributions.
The estimated density can then be easily segmented to classify
the original data. The main drawback of this approach is thatA density function f is said to beunimodal on some
histograms obtained from real data cannot always be modeleterval [a, b] if f is increasing on somp, ¢] and decreasing
as mixtures of Gaussians, for example, luminance histograors [c, b]. It seems appropriate to segment a histogram by
of natural images, as we shall see in the experimental sectitmuking for segments on which it is “likely” that the histogram
Non-parametric approaches give up any assumption on thethe realization of a unimodal law. On such intervals we

I. INTRODUCTION

II. A NEW APPROACH TO HISTOGRAM ANALYSIS



will say that the histogram is “statistically unimodal” (thisway to accept or to reject is to test for each interval
expression will be precisely defined later). Obviously, sudh,?] the similarity betweenr(a,b) and p(a,b). Under the
a segmentation is generally not unique. In particular the sdu/pothesisH,, the probability that[a,b] contains at least
mentation defined by all the local minima of the histogram hasr(a,b) samples amongV is given by the binomial tail
this property. However, small variations due to the sampling§(N, Nr(a,b), p(a,b)), where

procedure should clearly not be detected as modes. In order to n
get a “minimal” division of the histogram, these fluctuations B(n, k,p) = Z ("j)zjj(l — p)n. (4)
should be neglected. We arrive at two requirements for an

admissible segmentation:

« in each segment, the histogram is

i=k

“statistically unimodal","' the same way, .the probability that, b] contains less than
« there is no union of several consecutive segments o (@, 0) samplefsl '_SB(J_V’N(l —r(a,b)),1 = p(a,)). If one
of these probabilities is too small, the hypothekis can be

which the histogram is “statistically unimodal”. iacted. Define h int bl it b ¢ tal
. . . r i in r interv its number
What are the right tests to decide whether a hlstograﬁ;fni eline for eac ervid, b] its number of false

is “statistically unimodal” on an interval or not? In a non
parametric setting, any unimodal density on the considered @B(M Nr(a,b),p(a,b))

interval should be hypothesized and the compatibility between if r(a,b) > p(a, b)
this density and the observed histogram distribution should M&EA, ([a,b]) = { 1141 TN
tested. Unfortunately, this leads to a huge number of tests 2 BV, N( _r(a’.b))’l — p(a,0))
and this is therefore impossible. There is, however, a way to if r(a,b) < p(a,b).
address this question by testing a small number of adequate ®)
unimodal laws. In [16], this problem was solved for the case

of decreasing laws. Our purpose here is to extend this metHagfinition 1 An interval [a, b] is said to be are-meaningful
to the segmentation of any histogram into meaningful modesjection of H, if
We shall treat the problem in three stages in the next three

3
sections: NFA, ([a,0]) < 5. (6)

o Step A: testing a histogram against a fixed hypothesized
density, Proposition 1 Under the hypothesi¢{,, the expectation of

« Step B: testing a histogram against a qualitative assunipe number ot-meaningful rejections among all the intervals
tion (decreasing, increasing), of {1,... L} is smaller thane.

« Step C: segmenting a histogram and generating an esti- N i )
mate of its underlying density. The proof of proposition 1 is obvious [12] and uses a B(gnfer-

) +1

roni argument, taking into account the number of t

o _ ) (the number of different intervals if1, ... L}). This means

A. Distribution hypothesis testing that testing a histograrh following a law p will lead on the
Consider a discrete histogramm = (h;);=1.. 1, with N average to less thanwrong rejections. It may be asked how

samples onL bins {1,...L}. The numberh; is the value reliable this estimate is. In [17], Grompone and Jakubowicz

of i in the bini. It follows that have shown that the expectationssfneaningful events could
L be approximated by/100. This will be confirmed in section IlI
Z h; = N. (1) (see table I). Thus in practice we fix= 1, and just talk about
i=1 meaningful rejections.

For each discrete interv@d, b] of {1,... L}, letr(a,b) be the o .

proportion of points ina, b], Definition 2 We say that a histograrh follows the law p on

, [1,L] if h contains ho meaningful rejection f6t.
1
r(a,b) = N <Z hi) . 2

Assume that an underlying discrete probability law=
(pi)i=1...1. is hypothesized foh. One would like to test the
adequacy of the histograii to this given density. For each
interval [a, b] of {1,... L}, letp(a,b) be the probability for a
point to fall into the intervala, b],

b
p(a,b) = sz (3 (@) (b)

. . . Fig. 1. Histograms ofN = 10000 samples distributed o, = 100 bins,
Consider the hypOtheSIﬂO that originates fromp. In tested against the unifom law dh, 100]. (a) Realization of the uniform law

other words, theN samples of the histograrh have been on[1,100]. (b) Realization of a mixture of two uniform law:, 50] with a
sampled independently ofil,... L} with law p. A simple Wweight0.45, and[51,100] with weight0.55.



Figure 1 shows two histograms which have been testeth example of discrete histogram and its Grenander estimator
against the uniform law offil, 100]. The first one is a real- are shown in Fig. 2.
ization of this law, and no rejection is found. The second is a
mixture of two uniform laws on different intervals. In this case,
several rejections of the uniform law di, 100] are found.
The rejection with the lowest NEA(the interval[50, 100]) is
shown in Figure 1(b).

B. Testing the monotone hypothesis

Next we test if a histograr follows a decreasing hypothe-
sis on[1, L] (the increasing case can be deduced by symmetry). (a) (b)
This test will be useful later to give a suitable meaning to . _ _ _
. L .. . . Fig. 2. (a) Original histogram, (b) Grenander estimator obtained from the
the expression “being statistically unimodal on an intervalpe,| agjacent Violators” algorithm.

The aim of a ideal test is to examine the adaptatiork ab

any decreasing density di, L]. This operation is obviously  The previous definitions of meaningful rejections can obvi-
impossible but can be circumvented by using an estimate d%jsly be applied to this case by takipg= 7 in the hypothesis

the most likely decreasing law that fits Ho, with 7 the Grenander estimator of= 2 h.
Let P(L) be the space of discrete probability distributions
on{l,...L}, i.e, the vectors' = (r;);=1,... such that Definition 4 Let h be a histogram ofV samples and* the
L Grenander estimator of = k. An interval[a,b] is said to

vie{l1,2,..,L}, >0 and Zri =1. (7) be ameaningful rejection for the decreasing hypothesis
=1 1

Let D(L) c P(L) be the space of all decreasing densities on NFA([a,0]) < 3, 11)
{1,...L}. If r = h € P(L) is the normalized histogram
of our observations, let be the Grenander estimator of
Introduced by Grenander in 1956 ([16]), this estimator i
defined as the non-parametric maximum likelihood estimat
restricted to decreasing densities on the line.

where NFA([a,b]) is defined for any density lag in (5).

@Ffinition 5 We say that a histogrank follows the de-
creasing hypothesis(resp. the increasing hypotheyien an
interval [a, b] if the restriction of the histogram tfu, b] (i.e.

Definition 3 The histograny is the unique histogram which ?a.tl = (ha; hat1, ... hy)) contains no meaningful rejection

achieves the minimal Kullback-Leibler distance framto for the decreasing (resp. increasing) hypothesis.
D(L), i.e.

KL(r||r) = éﬂpi(HL) KL(r||p), (8) C. Piecewise unimodal segmentation of a histogram
p
I N Definition 6 We say that a histograrh follows the unimodal
whereVp € D(L), KL(r||p) = >_;2, rilog ;. hypothesison the intervalfa, b] if there existsc € [a, ] such

that h follows the increasing hypothesis an ¢| and i follows

Grenander shows in [16] (see also [3]) thatis merely ; .
e decreasing hypothesis ¢ b].

“the slope of the smallest concave majorant function dp
the empirical repartition function of”. i~ also achieves the \yo gl segmentation of a sequencd — s, < s <
minimal L2-distance from- to D(L). It can easily be derived

. f . 4 ; < 8, = L. The numbern is termed length of the
from r by an algorithm called “Pool Adjacent Violators (Seesegmentation. Our aim is to find an “optimal” segmentation
[21, (4] S of h, such thath follows the unimodal hypothesis on each

interval [s;, s;11] of S. If S is the segmentation defined by

all the local minima ofh, h follows obviously the unimodal
Consider the operatoD : P(L) — P(L) defined by: for hypothesis on each of its segments. But this segmentation is

r = (ri)i=1,... € P(L), and for each intervali, j] on which not reasonable in general (see Fig. 3 (a)). A segmentation fol-

ris increasing,i.e. 7; < riy1 < ... <7 andr;_y1 > r; and  Jowing the unimodal hypothesis on each segment is generally

rjy1 <7j, Set not unique. In order to be sure to build a minimal (in terms of

T+ ..+ . number of separators) segmentation, we introduce the notion
D(r)y, = T for k& i, j], ) of “admissible segmentation”.

and D(r)g = ry otherwise.

Pool Adjacent Violators

Definition 7 Leth be a histogram o{1,... L}. A segmenta-

This operator D replaces each increasing part of by a tion S of 4 is admissibleif it satisfies the following properties:

constant value (equal to the mean value on the interval). A, 1 follows the unimodal hypothesis on each interval

fi_nite number (Igss th.an.the. siZe of r) of iterations of D [5:, 8i41],

yields a decreasing distribution denoted « there is no intervalls;, s;] with j > i + 1, on whichh
7= DX(r). (10) follows the unimodal hypothesis.



The first requirement avoids under-segmentations, and thé zone of the histogram. If onlsegments are required, the
second one avoids over-segmentations. It is clear that suckeaond and third modes are united. It is interesting to note that
segmentation exists. Starting from the segmentation definedfby the energy defined in [1], the bimodal segmentation has
all the local minima ofh, merge recursively the consecutivealmost the same energy as the three-modal segmentation. This

intervals until both properties are satisfied. implies that with a term penalizing the number of segments
) ) . in the energy, the bimodal segmentation would certainly be
Fine to Coarse (FTC) Segmentation Algorithm: chosen instead of the three-modal one. Therefore, the small

1) Define the finest segmentation (i.e. the list of all the locghode cannot be found by this kind of method.
minima, plus the endpoints 1 adg S ={so,... , s} of  Figure 6 shows the result of the FTC algorithm on a
the histogram. more oscillating histogram. Popular techniques of histogram
2) Repeat: analysis such as mean shift [9] would over-segment this
Choosei randomly in[1, length(S) —1]. If the segments histogram, as noticed in [25], since many of the observed small
on both sides of; can be merged into a single intervalpscillations would be detected as peaks.
[si—1,si+1] following the unimodal hypothesis, group
them. Update5. ll. EXPERIMENTS
Stop when no more pair of successive intervals follows

the unimodal hypothesis. The experimental section is organized as follows: First,

. . , oo some experiments on synthetic data are performed to test the
3) Repeat step 2 with the unions gfsegments; going - : .
from 3 to length(S) ability of the method to segment mixtures of laws withaut
| b ked Ih 3i . . _priori assumption. Then, some experiments on image segmen-
h t mus:h (t-:‘trhemar.e that step tlsf r}:ecesstiry Slqceélt ﬁ%‘ﬁon are displayed, and the validity of modeling real data
appen that the union of segments follows the unimoda histograms by Gaussian mixtures is discussed. The section

hypothesis whilek < j successive intervals contained in thise ds with experiments on document segmentation, and the
union do not. For this reason all the possible combinations bustness of the method is tested

successive intervals must be tested.
The result of this algorithm on a histogram is shown on ]
Fig. 3. A. Some results on synthetic data
>From a given probability law, 100 distributions, repre-
sented by N = 2000 samples each, were generated and

* guantized on 50 bins. For each distribution the number of
segments found by the FTC algorithm was noted. Table |
> shows for different classical laws the number of distributions
among the 100 leading to 1, 2 or 3 segments. The laws
o0 used here are the uniform law, a gaussian distribution of
standard deviation 10 and mixtures of two gaussian functions

ol - —— IN(p,0)+ IN(p+d, o), with o = 5 andd = 20, 30 or 4.
For a uniform or a Gaussian law the number of segments
(@ is almost always found to be 1. For Gaussian mixtures, the

results are of course closely related to the distahbetween

3000 the means of the Gaussian distributions. Whkga- 20, the
FTC algorithm always finds a single segment. It begins to

00 find two segments when ~ 2.5¢, and finds two segments

in 99% of the cases as soon @s> 3.40. Figure 4 shows

that these results correspond to intuition. Whee: 20, the

two Gaussian functions cannot be distinguished, whereas the

mixture clearly shows two modes whén> 30. These results

also obviously depend on the numhk¥rof points. The larger

®) N is, the more each distribution looks like the real mixture law,
and the sooner the algorithm finds two segments. Of course,

Fig. 3. (a) Initialization of the algorithm (all the local minima of the segmenting Gaussian mixtures can be made more efficiently
histogram). The histogram presents small oscillations, which create several
local minima. (b) Final segmentation after FTC algorithm. Three modes are

°
8
3
8

detected in this histogram, one is very small. TABLE |
) . . . NUMBER OF SEGMENTS FOUND BY THEFTC ALGORITHM FOR 100

In the histogram of Fig. 3, an er1_ergy—m|p|m|2|r_19_algorlthm SAMPLES OF SIZE20000F DIFFERENT LAWS
(for example the one presented in [1]) gives similar results _ _ _
if is specified that3 segments are required. The separator unif. | gauss.| ~ mix. of 2 Gaussian laws
between the second and third modes is not located exact d=20 | d=37 | d=4o

_ Mo at Y T segment|| 99 | 100 100 24 0

at the same place, but this variation has a negligible effect 2 seg. 1 0 0 76 100
on the classification, since very few points are represented in 3 Seg. 0 0 0 0 0




(@) (b) o

@ (b)

©

Fig. 4. Examples of Gaussian mixtures of the fof\/ (1, ) + N (1 +
d,o), whereo = 5. (a) Cased = 20, (b) d = 30, and (c)d = 4o0. For

d = 20, the FTC algorithm finds no separator. For the other mixtures, the
vertical line indicates the segmentation found.

by dedicated algorithms if we really know they are Gaussian.
In practice, observed mixtures are seldom Gaussian mixtures.

B. Some experiments on image segmentation ©

Figure 5 displays an image that contains a uniform backig- 5- (3)_0“9"'&' i”&age ((?;99X 374 Pi?elﬁ), (b) its intensity h(;sfogfamh
. : . . gmented into 4 modes. (c) Regions of the image corresponding to the 4
ground and a set of small objects of different intensities. Tli%tained histogram modes (in decreasing level of intensity, the background

intensity histogram shows a large peak corresponding to tleither white or black depending on the mean intensity of the represented
background and very small groups of values correspondingede)-
the objects in the foreground. The FTC algorithm segments the
histogram into four modes. The associated regions are shown
in Fig. 5, each one of them corresponding to a different objeet the selected mixture. This can be tested on the 'Lena’
in the scene. histogram. The EM algorithm is initialized by a k-means

Modes of a gray level histogram do not necessarily corrglgorithm. For a significance level 6f% the first value of
spond to semantical visual objects. In general modes simpiyleading to an accepted mixture is= 14 (the p-value for
correspond to regions with uniform intensity and segmentirigis mixture is 0.053). The adaptation between this mixture
the histogram boils down to quantizing the image on thnd the histogram is confirmed by a Cramer von Mises test
so-defined levels. This is the case in Fig. 6. The histogra@ha significance level 3% (p-value = 0.0659). Figure 6 (d)
of 'Lena’ is automatically divided into 7 modes, and théhows this best mixture of 14 Gaussian laws and indicates
corresponding image quantization is shown in Fig. 6 (dfs local minima. Observe that this density is constituted of 7
Remark that no information about the spatial relations betwegtpdes that correspond exactly to the modes found previously.
image pixels is used to obtain the segmentation. Some authorgVith more demanding tests (a Chi-square test, or the search
(e.g. [23], [8]) propose the use of such information to improvef meaningful rejections presented in section II-A), all mix-
the results of histogram thresholding techniques. tures are rejected untdt = 20 (the modes found in this case

As mentioned in the beginning of section I, segmenting are still the 7 same modes). This illustrates the discrepancy
histogram consists of two steps: 1. choosing a set of possibktween the number of Gaussians needed to correctly represent
densities; 2. looking for the simplest of these densities whithe law and the actual number of modes. This discrepancy can
better adapts itself to the histogram for some statistical tebe explained by the following observation: when a digital pic-
In the FTC algorithm, the densities proposed are a set tofe is taken, the sensors of the camera and the post-processing
mixtures of unimodal laws, constructed from local Grenand#rat is used to store the picture into a file are non-linear.
estimators of the histogram. The test consists in lookirigven if the real intensity values of a given object followed
for meaningful rejections. Another option is to use an EM Gaussian law, the intensity distribution of this object on the
algorithm to look for the best mixture of Gaussian laws picture would not be well represented by a Gaussian function.
fitting the histogram. For each the adequacy of the mixtureln particular, the corresponding mode on the histogram can
to the histogram is measured by a Kolmogorov-Smirnov teste highly non-symmetric (see e.g. Fig.6). Such a mode needs
The final segmentation is then defined by all the local mininseveral Gaussian laws to be well represented, whereas a unique



unimodal law fits it. As a consequence, looking for a mixture
of unimodal laws is more adapted in this case than looki 000] L
for Gaussian mixtures.

0 60

6004
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©

Fig. 7. (a) 'Beans’ image. (b) Hue histogram of the image and corresponding

0 X segmentation in 6 modes (remark that the hue histogram is circular). (c)

Corresponding segmentation of the image.

0 50 100 150 200 0 ) ) )
@ to any kind of written documents (see Fig. 10). When the
background pattern is complicated, or when different inks are
Fig. 6. (a) Image (256x 256 pixels) Lena. (b) Its intensity histogramused in the text, segmenting the histogram in only two modes
segmented into 7 modes by the FTC algorithm. Observe that this histogragnnot g good solution. Finding automatically the number of
presents strong oscillations. In the initialization, the histogram presented 60 des in the hi I h d
local minima among 256 bins. The segments have been merged until tH@9 es In the histogram allows one to get more than two modes
follow definition 7 of an admissible segmentation. (c) Image Lena quantizadhen necessary.
on the 7 levels defined by the histogram segmentation shown in (b). (d) Besjp simple written documents. where 0n|y one ink has been
mixture of 14 Gaussian laws for the histogram (b), found by an EM algorithm. d th ion f db’ he ETC al ithm is bimodal
The local minima of this mixture, indicated by the vertical lines, corresponlds? ’ the segmentation found by the ) ngrlt mis ) Imoaal.
almost exactly to the separators found in (b). This is the case of the example shown in Fig. 8. The histogram
is segmented into two modes, one of them corresponding to
Figure 7 shows an example of image segmentation using the text characters (see Fig. 8(c)). This example shows that the
hues instead of the gray levels. Remark that hue histografEC algorithm is able to find very small modes when they are

are circular. The FTC algorithm is perfectly adapted to thisolated enough. In Fig. 9, although the image presents several

case. different gray shades, the FTC algorithm also segments the
histogram into two modes (Fig. 9(b)), separating clearly the
C. Some experiments in document image analysis characters in the check from the background, as we can see in

. L .Fig. 9(c). In these experiments, it must be underlined that the
Histogram thresholding is widely used as a pre-processin ; . : .
Ze of the images can interfere in the results. In a text image,

step for document understanding and character recognition. g larger the proportion of white pixels is, the more difficult i

main use in this domain is to sort out the background and thgcomes to extract a black mode from the histogram, since it

characters in scanned documents. In this kind of documents N, .
. o : ends to become negligible in front of the white one. In these
the intensity histogram generally presents two different modes: o ) ;
dses, it is interesting to narrow the image around the text.

one large mode that representg the background, and_ anoﬁu?rr] the case of the histogram of the image shown in Fig. 10
one, _mu<_:h smaller, corresponding to the text. Many different algorithm finds three different modes, corresponding t(;
binarization methods have been proposed (see [21] and [1 5ee intensity regions in the image. The first mode represents

to find the best histogram thresholds for grayscale ima 5
) 9 . graysca 'a0%Re band in the bottom of the image, the second mode
Nowadays, different methods are still studied, using simple

. . corresponds to the text and the stars of the image, and the
spatial featur_es ([10].)’ texture features ([20]) or mathematlct%?ird one is the background. A bi—level histogram thresholding
morphology information ([6]).

However, binarization methods present two drawback@.ethOOI could not yield this separation (e.g. [22], [21])

First, when the foreground region (the text here) is too small in s

comparison to the background (see Fig. 8), the position of tRe Sensibility of the method

threshold becomes arbitrary, and the foreground may not beGenerally, two factors can influence the segmentation: the
well detected. Second, binarization methods are not adaptedse in images and the histogram quantization noise.
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Fig. 9. (@) Original image (755x 201 pixels), (b) Intensity histogram of
the original image and corresponding segmentation. This histogram presents
Jo P D TFoRHMENTR several local minima, but the final segmentation is bimodal. (c) Pixels
HoCosTa | Lloserq corresponding to the first segment of the histogram.
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Fig. 8. (a) Original image (1010x 661 pixels). (b) Intensity histogram and

@ (b)
the threshold obtained. Pixel ding to the left t of
hisetog;ZrSn.o obtained. (c) Pixels corresponding to the left segment o %. 10. (a) Original image (246x 156 pixels), (b) Intensity histogram with

the 3 modes obtained. The first mode on the left corresponds to the lower and
darker band of the image, the middle mode corresponds to the text and the
stars, and the last mode is the background one.

Theoretically if we add a noiseto an imagey, its intensity

distribution becomesh,, * hy, where h, is the gray level using FTC and evaluate the probability of error by applying:
histogram ofu, and h;, the noise histogram. This results in g P 4 y appying:

a blur in the histogram. If the image hd$ pixels, and if N N
the noise is an impulse noise, added % of the pixels, P(error) = Z Z P(R;|R;)P(R;) (12)
then hy, * hy = (1 — p)hy + pang 10,255, Which is not really J=1i=1,i#j

disturbing for the FTC algorithm (adding a uniform noise on @ghere N is the number of regions in the manually segmented
histogram does not change its unimodality property on a givgflage (v = 4 in our example),P(R;) is the proportion of
interval). Moreover this kind of noise can be easily removeﬂxe|s in the jth region andP(RZ|RJ) is the proportion of
by a median filter on the image. In the case of gaussigikels in thejth region assigned to thigh region by the FTC
noise, the operation smoothes the shape of the histogram a|gorithm.
As a consequence, the number of modes found can decreasgne results of this evaluation are shown in Table II. Since
when the standard deviation of the noise increases too muge histogram of the original synthetic image was composed
However, this kind of image noise can be efficiently handlegk 4 gaussians, the EM algorithm was also used to estimate
by NL-means algorithms [5] before computing the histogranthis mixture. Remark that when SNR decreases the gaussian
The performance of the FTC algorithm in the presenamixture hypothesis no longer holds and the EM algorithm
of additive noise can be evaluated as follows ([24], [19]bives poor results. The FTC method, however, is able to cope
(1) create a synthetic image (Figure 11, top) and segmaenith this distortion down to lower SNR values.
it manually; (2) add increasing quantities of uniform noise The real noise in histograms is the quantization noise,
(Figure 11, middle and bottom); (3) segment the histogramaeming from the fact that the histograms have a finite number
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Fig. 11. Performance evaluation of the FTC algorithm in the presence of ad- 6 & i " a0 " m L AT A

ditive noise. Top, reference image (256256) and its histogram. Middle and ; ; ; ; ~
bottom, images corrupted with uniform noise (SNR=24dB and SNR=17dB, gtzgmlgizg)ggimao;ag;; |rza?fzosgggmﬁ;ztdog;a?f:&;p g (lg]o%%% 2:bm
respectively), and their corresponding histograms. The segmentation res”“ssamples) ples)
are marked on the histograms. ’ ’

Fig. 12. Sensibility of the method to quantization. The larger the number of
samples is, the more certain the segmentation is. It follows that the histogram

N of samples. If a histograrh originates from an underlying is more and more segmented wheéd increases. The segmentation tends

. . . towards the segmentation of the deterministic histogram of the continuous
densityp, the larger) is, the moreh looks likep. WhenN —  ngerlying image.
oo, a segmentation algorithm should segment the histogram at
each local minima of its limitp. Consider the example of
Fig. 12. An image of size 1600x1200 is subsampled severabdal law fitting the data. The proposed adequacy test, called
times by a factor 2. Each intermediate image yields an higneaningful rejections”, is a multiple test which presents
togram. These histograms can all be considered as realizatithts advantage of being simultaneously local and global. This
of the density given by the histogram of the original imagenethod is more generic than looking for Gaussian mixtures
The smaller the number of samples is, the less informatiand avoids overestimating the number of modes. The corre-
we have, and the less the histogram can be segmented wjtlonding algorithm is able to detect very small modes when
certainty. Figure 12 shows that the number of segments foutéy are isolated, which makes it well adapted to document
by the FTC algorithm increases witN. The separators tendanalysis. The statistical aspect of the approach makes it robust
towards the separators of the deterministic histogram of tte quantization noise: the larger the number of samples is,

continuous underlying image. the more the histogram can be considered as deterministic,
and the more it is segmented. Several tests on histograms
IV. CONCLUSION computed from real or synthetic data endorse the efficiency

This papers presents a new approach to segment a histog ffhe method. N.OW’ It 1s clea_r th"?“ such a method should
without a priori assumptions about the number or shape extended to higher dimension in order to segment color

its modes. The central idea is to test the simplest mul i_istograms. First results have been obtained by segmenting
hierarchically color histograms in the HSV space. A direct

adaptation of the method to any dimension is currently studied.
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