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INTRODUCTION

Modeling images as samples of Gaussian random fields

Letu : © — R be a grey-level image. It is seen as a sample of a multivariate
Gaussian distribution N (11, X2) of density

1
_1 .
p(u) = det(>) "2 E)Zeﬁu—u) b ‘<u—u)/z’

~ (vam)el

where u is seen as the vector {4;; j € Q}.

Here i : © — R is the mean (size |©2|) and X is the covariance matrix, it is a
|| x |2 symmetric positive matrix.



PREVIOUSLY

In the previous lectures : we have considered stationary periodic Gaussian
models, implying that

the vector (image) u is constant
and Vi,j€Q, X(i,j) = 2(0,j —i).
Number of parameters (degrees of freedom) ~ 1 + || /2.

Number of samples : one image, and all its periodic translations.



TODAY

We will consider general Gaussian models :
Number of parameters (degrees of freedom) = |Q| + |Q[(|©2] +1)/2

Ex : When Q2] = 256 x 256, nb of parameters to estimate is of the order of
256* /2, which is quite huge !

Number of samples : just one image

BUT one can consider image patches (imagettes) and use the redundancy of
natural images.



PATCH-BASED RESTORATION

Patch-based denoising Buades et al. ('05), Awate Whitaker ('06), Dabov et al.
('07), Lebrun et al. ('12), etc.
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APPLICATIONS IN IMAGE RESTORATION AND EDITION

Image edition and synthesis

image u

» texture synthesis Efros-Leung ('99)
» image retargeting or reshuffling Barnes et al. ('09)
» style transfer Frigo et al. ('16)

Image restoration

» Gaussian denoising Buades et al. ('05), Awate Whitaker
(’06), Dabov et al. ('08), Lebrun et al. ('12),

» non Gaussian denoising : Poisson, Speckle Deledalle et
al. ('10), ('12), impulse noise Delon Desolneux ('13)

» inpainting Wexler et al. ('04), Criminisi Perez ('04),
Newson et al. ('14)

» interpolation Yu et al. ('12), demosaicing Buades et al.
('07)

» high dynamic range images (HDR) Aguerrebere et al.
('17), decompression




APPLICATIONS IN IMAGE RESTORATION AND EDITION

Image edition and synthesis
» texture synthesis Efros-Leung ('99)
» image retargeting or reshuffling Barnes et al. ('09)
» style transfer Frigo et al. ('16)

Image restoration

» Gaussian denoising Buades et al. ('05), Awate Whitaker
(’06), Dabov et al. ('08), Lebrun et al. ('12),

» non Gaussian denoising : Poisson, Speckle Deledalle et
al. ('10), ('12), impulse noise Delon Desolneux ('13)

» inpainting Wexler et al. ('04), Criminisi Perez ('04),
Newson et al. ('14)

» interpolation Yu et al. ('12), demosaicing Buades et al.
('07)

» high dynamic range images (HDR) Aguerrebere et al.
('17), decompression




IMAGE DENOISING : NLMEANS (2005)

We observe
Uu=u-+n

with n; i.i.d. and ~ A(0, ¢?). The aim is to recover u.
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We observe
u=u-+n

with n; i.i.d. and ~ A(0, ¢?). The aim is to recover u.
Non-local Means, Buades, Coll, Morel, ('05)
2jeq Wil

Zj Wij
where the w;; are weights that measure the similarity between patches
centered at i and j, typically

VieQ, NLu=

— ||x =13 /2%
Wiy = o= IR/

Région uniforme Région texturée Contour géométrique



IMAGE DENOISING : NLMEANS (2005)

Non-local means, Buades, Coll, Morel, ('05)

Noisy image, o = 20 NL-means



STYLE TRANSFER WITH PATCHES (2016)

technicolor

Frigo et al. ('16)

Markov random field, optimization

[m]

=
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Model : we observe a corrupted image u
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observation operator  unknown
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INVERSE PROBLEMS

Model : for all patches y; in the image u

yi = A X o+ o

observation operator unknown  noise

Aim : estimate the « clean » patches x; € R” from the observed {y}:

L.
image u noisy

missing pixels




RESTORATION STRATEGIES

Under the hypothesis of an additive Gaussian noise and a prior distribution
p(x) on the patches, the posterior distribution is
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X = arg max p(x|y) = argmin Egaa(x,y) + Esmoon(x)
xERP X | S— N——

fidelity term regularity term

Link with local variational approaches
Ex : local TV denoising, Louchet-Moisan ('11), X = arg min, [|x — y||3 + ATV (x).



GAUSSIAN PRIOR

For Gaussian priors, MAP = MMSE = Linear MMSE.

If X ~ N(p, %) and N ~ N(0, 0%1,) are independant,
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GAUSSIAN PRIOR

For Gaussian priors, MAP = MMSE = Linear MMSE.

If X ~ N(p, %) and N ~ N(0, 0%1,) are independant,

) 1 _
& =1(y) s=Argmax, logplxly] = Argmin, — (Ax — y)'(Ax —y) + (x = )5 (x — 1)

=+ TA(ASA" + 0°L) " (v — Ap)

Pure denoising case (A = I,). Let ¥ = Qdiag(A1, ..., \,)Q', then

A
P )(\) . 0
2
- 0 yree=dEEL 0 t
X=p+0 : : . : o(y—m)
0 0 —Apffaz

— link with the diagonal estimation (Q well chosen basis, dictionary, PCA,
etc.), Wiener or thresholding. Ex : Deledalle et al. ("11), Zhang et al ('10).



DENOISING

Most of the recent patch-based denoising methods use Gaussian or GMM
priors, EPLL ('11), NL-Bayes ('12), PLE ('12), S-PLE (13), DA3D (’15).

Choice of the example: Gaussian model
model and R”
interence of the
parameters

Input: noisy image output: denoised image

RY

Statistical framework

patches space

Denoising
strategies
(MMSE
estimator, - ¢
MAP, etc.)




TwO MAIN ISSUES

1. How to reconstruct an image & from the set of denoised
patches ?

2. How to estimate (1, X)) from a set of noisy patches {y;} ?



RECONSTRUCTION OF &t FROM THE DENOISED PATCHES

Central value
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RECONSTRUCTION OF &t FROM THE DENOISED PATCHES

Central value

Aggregation of the estimators

|
>

A 3
Global optimization in u, EPLL, Zoran-Weiss ('11) ; Teodoro et al ('16),

LA - u
ArgmmuEHAu —al - Zlog p(x).

i

Numerical scheme : half quadratic splitting with auxiliary variables {z} :
. A ~112 /8 u 2
Argmlnu,{zi}iE”Au —ills + Z EHXI‘ —all” - Zlog p(zi)

Alternate :
1. update the patches with the MAP, with data fidelity with the patches of
the previous step.
2. update u = linear combination of the previous image and the aggregated
actual patches.



ESTIMATION OF THE GAUSSIAN PRIOR ON THE PATCHES

A first solution : local estimation
Patch y, given — set of patches y», ..., yu Similar to y; (for a certain
« distance »). Empirical estimation of (u, 2) from this set.




ESTIMATION OF THE GAUSSIAN PRIOR ON THE PATCHES

A first solution : local estimation
Patch y, given — set of patches y», ..., yu Similar to y; (for a certain
« distance »). Empirical estimation of (u, 2) from this set.

NL-Bayes, Lebrun et al. ('13)

1 M
A:IP7 ﬁ:MZyl
i=1

M
~ 1 N N
S= g > bl Al - o,

1. Vi, estimate (u;, %), restore
Xi = ]E[X,'|Yi = Yi, Mi, Z,‘] and
aggregate.

2. Vi, re-estimate (u;, X;) on the
image of 1., and
restore/aggregate again.



PROGRESS IN IMAGE DENOISING

i, o =30 DCT2 (2001)
RMSE = 30, PSNR = 18.58

RMSE = 16.8, PSNR = 23.6

TV-L2 (1992) NLMeans (2005) NLBayes (2012)
RMSE =8.35, PSNR =29.7 RMSE =7.98, PSNR=30.1 RMSE =6.23, PSNR = 32.24



ESTIMATION OF THE GAUSSIAN PRIOR ON THE PATCHES

Second solution : global estimate with a GMM The hypothesis is that the
patches are independant (!) samples of a random variable X € R? with
probability density

K
F) = mgl m, ),
k=1

where g(x; e, Xk) is the density of A (g, Xk).
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Second solution : global estimate with a GMM The hypothesis is that the
patches are independant (!) samples of a random variable X € R? with
probability density

K
F) = mgl m, ),
k=1
where g(x; e, Xk) is the density of A (g, Xk).

» EPLL, Zoran-Weiss ('11). Global model learned on a large dataset of
images.

» fast-EPLL, Parameswaran et al. ('17).

» PLE, Yu et al. ("12); more K-means rather than GMM,

» SURE-PLE, Wang et Morel ('13), based on Mixture PCA, Tipping &
Bishop ('99)

» Single Frame Denoising and Inpainting, Teodoro et al. ('15)

» HDMI (High-Dimensional Mixture Model for Image denoising), Houdard
etal. (17)

BUT...



THE CURSE OF DIMENSIONALITY

» In high dimension, the data are isolated : to capture a fraction a = 1% of
the volume of the unit hypercube in dimension p = 100, we need a
1
hypercube of side length ar ~ 0.95

» |f the number n of samples is not large enough, the estimate S can be
ill-conditioned or singular

z2

7




THE CURSE OF DIMENSIONALITY

Some solutions

» Reduce the dimension, use small patches (3 x 3 or 5 x 5 in NL-Bayes)

» Regularize : use hyperpriors HBE, Aguerrebere et al. ('17)
» Add sparsity hypothesis

» covariances of small dimension, given by the model SURE-PLE, Wang and
Morel ('13) or

» small intrinsic dimension, estimated for each Gaussian component HDMI,
Houdard et al. ('17)



HBE - HYPERPRIOR ON (u, X2)

HBE Aguerrebere et al. [17]. Given a set of similar patches yi, ..., yu, we

want to estimate the clean patches x, . . . x» by computing

Argmaxyy s p({xiki, 1, B [ {vidi) =

Argmaxy s p({yit [ {6}, 0, D) - p({xd |, 2) - p(plE) - p(2)
N—— N~

N (Aixi, Zn;) N(p,%) N(po,2/K)  IW(vZo,v)




HBE - HYPERPRIOR ON (i, %)

HBE Aguerrebere et al. [17]. Given a set of similar patches yi, ..., yu, we

want to estimate the clean patches x, . . . x» by computing

Argmaxg .y s p({xiti, 1, B [ {yi}i) =

Argmaxg, s p({yi} [ {x}, 0, 2) - p({x} [ 1, 2) - p(plE) . p(¥)
N—— ~—~—
N(4ixi,5y,) N (D) N(uo.B/k)  TW(Eg.v)

Setting A = ©7', we have
b ) = —logp({ad, A | (1))
= S0 A5 0 = Am) = “2 g |

o

M
1 K 1
3 E — ) A — p) + 5(# — o) " A(p — po) + Etrace[leoA]

on R x RP x Sj+(R).
The function f is bi-convex in ({x;}, u) and A — numerical scheme with

alternate minimization (explicit formulas available).



RESULTS

(a) Ground-truth

(c) PLE (26.78 dB)

70% missing pixels.
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(f) Ground-truth (g) HBE (30.20 dB) (h) PLE (27.89 dB)

70% missing pixels.



RESULTS

70% missing pixels, Gaussian noise o = 10.




RESULTS

() Ground-truth

() HBE (28.34 dB)

(h) PLE (27.50 dB)

70% missing pixels, Gaussian noise o = 10.




TEXTURE SYNTHESIS : EFROS-LEUNG (1999)

Efros - Leung ('99)

» Underlying model : Markov random field. The goal is to estimate u;
knowing u in a neighborhood of i.

» First paper using a patch-based approach and exploiting the idea that
natural images are redundant.

» Global optimization instead of sequential one Kwatra et al. ('03) ,
Synthesis patch by patch (instead of pixels) Efros-Freeman ('01) ,
Mathematical analysis Levina and Bickel ('06)

%_E.l ¥

e ———

input image synthesizing a pixel




TEXTURE SYNTHESIS : EFROS-LEUNG (1999)
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Try online on IPOL : demo. ipol.im/demo/59/


demo.ipol.im/demo/59/

EXTENSION : GAUSSIAN MODELING OF THE PATCHES

Proposed by Raad et. al ('14) : to avoid the verbatim effect, iterative
generative method with a local Gaussian model and a quilting step (as in
Efros-Freeman).




ESTIMATING AND SAMPLING A GAUSSIAN PATCH

Estimating

. . 2 .
From a set of m similar patches yi, ..., y. (s€en as vectors in R*'), estimate
the empirical mean and covariance by

Zy/ and T= L (V- p)(r -,

where Y is the s> x m matrix containing the patches.

Sampling
How to sample from N (u, ) ? Very simple, since

m
e et )

is N (i, ) distributed when the a; ~ A/(0, 1) i.i.d.

Z=p+



FROM PATCH MODELS TO IMAGE MODEL

Patch model fusion Saint-Dizier, Delon, Bouveyron ('18)
Model p; on patch x;, i = 1, ..., 1. Each patch domain is denoted 2.

Fused image model :

p(w) o< [ i)

Rk : Model obtained by conditioning on the equality of patches on their
intersections. Generalization of EPLL, Zoran Weiss ('12)



GAUSSIAN CASE

When p; = N (u;, %), then p = N (p, ), with

2 (k, 1) Z w7k, 1),
ik, [€QY;
(') k) = Z (S i) ().
k€

-



CONCLUSION

Today : Gaussian models on patches (non stationary, non periodic), many
applications

Next lecture (27 February) : Julie Delon, on GMM.



EXERCISE (PRACTICAL)

1. Load the Barbara image.
2. Add Gaussian noise to it, with variance o = 20 for instance.

3. Crop two parts of the image of size 100 x 100 for instance : a piecewise
smooth part, and a highly textured part.

4. Implement different denoising methods : simple average value in a
neighborhood, NL-means and NL-Bayes. What are the key parameters ?
And what do you observe ?



