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PART I : Gaussian texture images



Framework

I We work with discrete digital images u ∈ RM×N indexed on the set
Ω = {0, . . . ,M − 1} × {0, . . . ,N − 1}.

I Each image is extended by periodicity :

u(k, l) = u(k mod M, l mod N) for all (k, l) ∈ Z2.

I Consequence : Translation of an image :



Discrete Fourier transform of digital images

I Image domain : Ω = {0, . . . ,M − 1} × {0, . . . ,N − 1}
I Fourier domain Ω̂ : the frequency 0 is placed at the center :

Ω̂ =

{
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2
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}
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Definition :
I The discrete Fourier transform (DFT) of u is the complex-valued

image û defined by :

∀(s, t) ∈ Ω̂, û(s, t) =
1

MN

M−1∑
k=0

N−1∑
l=0

u(k, l)e
−

2iksπ
M e

−
2iltπ

N .

I |û| : Fourier modulus (amplitude) of u.
I arg (û) : Fourier phase of u.
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I |û| : Fourier modulus (amplitude) of u.
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Discrete Fourier transform of digital images

Symmetry property :
I |û| : the Fourier modulus is even.
I arg (û) : the Fourier phase is odd.

Visualization of the DFT :

Image u Modulus |û| Phase arg (û)



Modulus and phase of a digital image

Exchanging the modulus and the phase of two images : (ref : Oppenheim
and Lim « the importance of phase in signals », 1981)

Practical exercise 1 :

Take two grey-level images of the same size. Compute their Fourier
Transform, switch their phases, and take the inverse Fourier transforms.
Visualize the two new images : what do you observe ?



Modulus and phase of a digital image

Exchanging the modulus and the phase of two images : (ref : Oppenheim
and Lim « the importance of phase in signals », 1981)

Image 1 Image 2

Modulus of 1
& phase of 2

Modulus of 2
& phase of 1

I Geometric contours are mostly contained in the phase.
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Modulus and phase of a digital image

Exchanging the modulus and the phase of two images :

Image 3 Image 4

Modulus of 3
& phase of 4

Modulus of 4
& phase of 3

I Textures are mostly contained in the modulus.



Modulus and phase of a digital image

Exchanging the modulus and the phase of two images :

Image 1 Image 4

Modulus of 1
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I Geometric contours are mostly contained in the phase.
I Textures are mostly contained in the modulus.



Random phase textures

I We call random phase texture any image that is perceptually invariant to
phase randomization.

I Phase randomization = replace the Fourier phase by a random phase.
I Definition : A random field θ : Ω̂→ R is a random phase if

1. Symmetry : θ is odd :

∀(s, t) ∈ Ω̂, θ(−s,−t) = −θ(s, t).

2. Distribution : Each component θ(s, t) is
I uniform over the interval ]− π, π] if (s, t) /∈

{
(0, 0) ,

(M
2 , 0
)
,
(

0, N
2

)
,
(M

2 ,
N
2

)}
,

I uniform over the set {0, π} otherwise.

3. Independence : For each subset S ⊂ Ω̂ that does not contain distinct
symmetric points, the r.v. {θ(s, t)|(s, t) ∈ S} are independent.

I Theoretical exercise 2 : Prove that the Fourier phase of a Gaussian
white noise W is a random phase, and that the Fourier amplitudes follow
a Rayleigh distribution.

I (Lazy) simulation : In Matlab, theta = angle(fft2(randn(M,N))).
I Random phase textures constitute a “limited” subclass of the set of

textures.
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Random Phase Noise (RPN)

I Texture synthesis algorithm : random phase noise (RPN) : (Van Wijk,
1991)

1. Compute the DFT ĥ of the input h.

2. Compute a random phase θ.

3. Set Ẑ = |ĥ|eiθ (or Ẑ = ĥeiθ).

4. Return Z the inverse DFT of Ẑ.

Original image h Modulus
∣∣∣ĥ∣∣∣ RPN associated with h



Discrete spot noise (Van Wijk, 1991)

I Let h be a discrete image called spot.
I Let (Xk) be a sequence of random translation vectors which are i.d.d.

and uniformly distributed over Ω.
I The discrete spot noise of order n associated with h is the random

image

fn(x) =
n∑

k=1

h(x− Xk).

(translations with periodic boundary conditions)

Spot h n = 10 n = 102 n = 103 n = 104 n = 105



Limit of the DSN model ?

?

Spot h n = 104 n = 105 n = +∞

I For texture synthesis we are more particularly interested in the limit of
the DSN : the asymptotic discrete spot noise (ADSN).

I The DSN of order n, fn(x) =
∑

k h(x− Xk), is the sum of the n i.i.d.
random images h(· − Xk).

I Central limit theorem for random vectors :

The sequence of random images
(

fn − nE(h(· − X1))√
n

)
n∈N∗

converges

in distribution towards the Gaussian random vector Y = (Y(x))x∈Ω with
zero mean and covariance Cov(h(· − X1)).



Asymptotic discrete spot noise (ADSN)

Expectation of the random translations :

E(h(x− X1)) =
∑
y∈Ω

h(x− y)P(X1 = y)

=
∑
y∈Ω

h(x− y)
1

MN

=
1

MN

∑
z∈Ω

h(z)

= mean of h.

I E(h(x− X1)) = m, where m is the mean of h.



Asymptotic discrete spot noise (ADSN)

Covariance of the random translations : Let x, y ∈ Ω,

Cov(h(x− X1), h(y− X1)) = E((h(x− X1)− m)(h(y− X1)− m))

=
∑
z∈Ω

(h(x− z)− m)(h(y− z)− m)P(X1 = z)

=
1

MN

∑
z∈Ω

(h(x− z)− m)(h(y− z)− m)

= Ch(x, y).

I Cov(h(x−X1), h(y−X1)) = Ch(x, y) where Ch is the autocorrelation of h :

Ch(x, y) =
1

MN

∑
z∈Ω

(h(x− z)− m) (h(y− z)− m) , (x, y) ∈ Ω.



Asymptotic discrete spot noise (ADSN)

I For texture synthesis we are more particularly interested in the limit of
the DSN : the asymptotic discrete spot noise (ADSN).

Expectation and covariance of the random translations :

I E(h(x− X1)) = m, where m is the mean of h.
I Cov(h(x− X1), h(y− X1)) = Ch(x, y) where Ch is the autocorrelation of h :

Ch(x, y) =
1

MN

∑
z∈Ω

(h(x− z)− m) (h(y− z)− m) = Ch(0, y− x).

Definition of ADSN :

I The ADSN associated with h is the Gaussian vector N (0,Ch).



Simulation of the ADSN

Definition of ADSN : the ADSN associated with h is the Gaussian vector
N (0,Ch).

Convolution product : (f ∗ g) (x) =
∑
y∈Ω

f (x− y)g(y), x ∈ Ω.

Simulation of the ADSN :
I Let h ∈ RM×N be a an image, m be the mean of h and W be a Gaussian

white noise image.

I The random image
1√
MN

(h− m) ∗W is the ADSN associated with h.

Spot h DSN, n = 105 ADSN



ADSN Simulation

Theoretical exercise 3 : prove that Y =
1√
MN

(h− m) ∗W is N (0,Ch)

distributed.

I Y is obtained from W by applying a linear mapping. Since W is a
Gaussian vector, Y is also a Gaussian vector.

I One just needs to show that E(Y(x)) = 0 and Cov(Y(x), Y(y)) = Ch(x, y).

I By linearity, E(Y(x)) =
1√
MN

(h− m) ∗ E(W)(x) = 0.

I Let x, y ∈ Ω,

Cov(Y(x), Y(y)) = E(Y(x)Y(y))

=
1

MN
E

(∑
s∈Ω

(h(s− x)− m)W(s)
∑
t∈Ω

(h(t − y)− m)W(t)

)

=
1

MN

∑
s,t∈Ω

(h(s− x)− m)(h(t − y)− m) E(W(s)W(t))︸ ︷︷ ︸
= 1 if s = t and 0 otherwise

=
1

MN

∑
s∈Ω

(h(s− x)− m)(h(s− y)− m) = Ch(x, y).
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Differences between RPN and ADSN
(ref : Galerne, Gousseau, Morel, 2011)

I RPN and ADSN both have a random phase.
I The Fourier modulus of RPN is equal to |ĥ|.
I The Fourier modulus of ADSN is the pointwise multiplication between |ĥ|

and a Rayleigh noise.

Spot h RPN Modulus ADSN Modulus

I RPN and ADSN are two different processes.

Spot h RPN An ADSN
realization

Another ADSN
realization



RPN and ADSN associated to texture images

I We add the original mean to RPN and ADSN realizations.
I Some textures are relatively well reproduced by RPN and ADSN.

Original image RPN ADSN

I ... But several developments are necessary to derive texture synthesis
algorithms from sample.



Extension to color images
I We use the RGB color representation for color images.
I Color ADSN : The definition of Discrete Spot Noise extends to color

images h = (hr, hg, hb).
I The color ADSN Y is the limit Gaussian process obtained in letting the

number of spots tend to +∞. It is simulated by :

Y =
1√
MN

(hr − mr1) ∗W
(hg − mg1) ∗W
(hb − mb1) ∗W

 , W a Gaussian white noise.

I One convolves each color channel with the same Gaussian white noise
W.

Spot h n = 10 n = 102 n = 103 n = 104 color
ADSN

I Phase of color ADSN : The same random phase is added to the Fourier
transform of each color channel.



Extension to color images

I Color RPN : By analogy, the RPN associated with a color image
h = (hr, hg, hb) is the color image obtained by adding the same random
phase to the Fourier transform of each color channel.

Original image h Color RPN
“Wrong RPN” : each channel
has the same random phase

ĥ =

|ĥR|eiϕR

|ĥG|eiϕG

|ĥB|eiϕB

 Ẑ =

|ĥR|ei(ϕR+θ)

|ĥG|ei(ϕG+θ)

|ĥB|ei(ϕB+θ)

 ẐW =

|ĥR|eiθ

|ĥG|eiθ

|ĥB|eiθ





Extension to color images
I Another example with a real-world texture.

Original image h Color RPN “Wrong RPN”

I Preserving the original phase displacement between the color channels
is essential for color consistency.

I ...however for most monochromatic textures, there is no huge difference.

Original image h Color RPN “Wrong RPN”



Avoiding artifacts due to non periodicity

I Both ADSN and RPN algorithms are based on the fast Fourier transform
(FFT).
=⇒ implicit hypothesis of periodicity

I Using non periodic samples yields important artifacts.

Spot h

ADSN



Avoiding artifacts due to non periodicity

I A good solution : Force the periodicity of the input sample.
I The original image h is replaced by its periodic component p = per(h),

see L. Moisan’s course.
I Definition of the periodic component p of h : p unique solution of{

∆p = ∆ih
mean(p) = mean(h)

where, noting Nx the neighborhood of x ∈ Ω for 4-connexity :

∆f (x) = 4f (x)−
∑
y∈Nx

f (y) and ∆if (x) = |Nx ∩ Ω| f (x)−
∑

y∈Nx∩Ω

f (y).

These two Laplacians only differ at the border :
I ∆ : discrete Laplacian with periodic conditions
I ∆i : discrete Laplacian without periodic conditions (index i for interior)

I p is “visually close” to h (same Laplacian).
I p is fastly computed using the FFT. . .



FFT-based Poisson Solver
Periodic Poisson problem : Find the image p such that{

∆p = ∆ih
mean(p) = mean(h)

In the Fourier domain, this system becomes :{(
4− 2 cos

( 2sπ
M

)
− 2 cos

( 2tπ
N

))
p̂(s, t) = ∆̂ih(s, t), (s, t) ∈ Ω \ {(0, 0)},

p̂(0, 0) = mean(h).

Algorithm to compute the periodic component :

1. Compute ∆ih the discrete Laplacian of h.

2. Compute m = mean(h).

3. Compute ∆̂ih the DFT of ∆ih using the forward FFT.

4. Compute the DFT p̂ of p defined byp̂(s, t) = ∆̂ih((s,t))
−4+2 cos( 2sπ

M )+2 cos( 2tπ
N )

for (s, t) 6= (0, 0)

p̂(0, 0) = m

5. Compute p using the backward FFT (if necessary).



Periodic component : effects on the Fourier modulus

I p is “visually close” to h (same Laplacian).

Image h
Periodic component

p = per(h)
Smooth component

s = h− p (+m)

Images

Fourier
modulus

I The application per : h 7→ p filters out the “cross structure” of the
spectrum.



Avoiding artifacts due to non periodicity

Spot h

ADSN(h)

ADSN(p)



Synthesizing textures having arbitrary large size

Ad hoc solution : To synthesize a texture larger than the original spot h, one
computes an “equivalent spot” h̃ :

I Copy p = per(h) in the center of a constant image equal to the mean of h.
I Normalize the variance.
I Attenuate the transition at the inner border.

Spot h Equivalent spot h̃ RPN(h) RPN
(

h̃
)

- Not really rigorous... The envelope changes the covariance.



Properties of the resulting algorithms

I Algorithms RPN and ADSN are both fast, with the complexity of the FFT
[O (MN log (MN))].

I Visual stability : All the realizations obtained from the same input image
are visually similar.

Spot h RPN 1 RPN 2 RPN 3

Practical exercise 4 :

Try the RPN algorithm online at
http://http://www.ipol.im/pub/art/2011/ggm_rpn/.
What do you observe ? Does it always « work well » ?

http://http://www.ipol.im/pub/art/2011/ggm_rpn/


Numerical results : similarity of the textures
I In order to compare both algorithms, the same random phase is used for

ADSN and RPN.

Image h ADSN RPN

I Both algorithms produce visually similar textures.



Numerical results : non random phase textures
Image h ADSN RPN



Texton associated with a Gaussian texture

Theoretical and practical exercise 5 :

1. Let g and h be two zero-mean spot functions. Show that they define the
same ADSN model if and only if their Fourier amplitudes are equal.

2. Let h be a zero-mean spot function. We define the texton of h as the
image T(h) : Ω→ R that satisfies T̂(h) = |ĥ|. Prove that T(h) is solution
of the two following optimization problems : find

v : Ω→ R that maximizes v(0) under the constraint |̂v| = |ĥ|.

v : Ω→ R that minimizes ‖ ∇v̂ ‖p
p under the constraint |̂v| = |ĥ|.

3. Show that the texton has also the following properties :
3.1 T(h) is a real and symmetric image.
3.2 T(T(h)) = T(h).
3.3 The operator T is 1-Lipschitz for the L2 norm : if u and v are two images

defined on Ω, then ‖ T(u)− T(v) ‖2≤‖ u− v ‖2.
3.4 The texton is translation invariant : T(τy(u)) = T(u) for all y ∈ Ω.

4. Practice : take a grey-level texture image, compute its texton, and try to
visualize it.



Texton associated with a Gaussian texture

FIGURE: First line : texture images. Second line : texton images.



PART II : detections



Detecting geometric structures in images

What do you see ?



Helmholtz Principle (Non-accidentalness principle)

Two ways to state the non-accidentalness principle :

1. First way is common sense : “we don’t see anything in a noise image”
(Attneave 1954)

2. Stronger statement : “we perceive what has a low probability of arriving
by accident”, in other words “if a large deviation from randomness
occurs, then a structure is perceived” (Witkin and Tenenbaum 1983,
Lowe 1985)

F. Attneave, Some informational aspects of visual perception. Psych. Rev., 1954.
A.P. Witkin and J. Tenenbaum. On the role of structure in vision, In Human and Machine Vision,
1983.

D. Lowe. Perceptual Organization and Visual Recognition, Kluwer Academic Publishers, 1985.



Illustrating example
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A contrario framework

General framework : just need an a contrario model of what the image is not
(pure noise)

I Observe E a geometric event in an image

I Compute NFA(E) that is the expected number of occurrences of E in an
image following the a contrario model.

I Definition : Let ε > 0. If NFA(E) < ε then E is called an ε-meaningful
event.

A. Desolneux, L. Moisan, and J.-M. Morel. From Gestalt Theory to Image Analysis : A Probabilistic

Approach, Springer-Verlag, 2008.
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Detection of straight segments in an image

LSD (Line Segment Detector) algorithm of Grompone et. al. (2010) :

Let Ω = {1, . . . ,M} × {1, . . . ,N} be a discrete domain and let u0 : Ω→ R be
an image. It orientation field is θ0 : Ω→ S1 = [0, 2π) given by

∀x ∈ Ω, θ0(x) =
π

2
+ Arg

∇u0(x)

‖∇u0(x)‖ ,

where

∇u0 = 1
2

(
X2 − X1 + X4 − X3

X3 − X1 + X4 − X2

)
.

R. Grompone von Gioi, J. Jakubowicz, J.-M. Morel, G. Randall, A Fast Line Segment Detector with

a False Detection Control, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010.



Let r ⊂ Ω be a rectangle with principal orientation ϕ(r). Define the number of
aligned pixels it contains by :

k(r; θ0) :=
∑
x∈r

1I|θ0(x)−ϕ(r)|≤pπ.

LSD: a Line Segment Detector

Figure 3: Rectangle approximation of line support region.
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Figure 4: Aligned points.

to define a noise or a contrario model H0 where the desired structure is not present. Then, an event
is validated if the expected number of events as good as the observed one is small on the a contrario
model. In other words, structured events are defined as being rare in the a contrario model.

In the case of line segments, we are interested in the number of aligned points. We consider the
event that a line segment in the a contrario model has as many or more aligned points, as in the
observed line segment. Given an image i and a rectangle r, we will note k(r, i) the number of aligned
points and n(r) the total number of pixels in r. Then, the expected number of events which are as
good as the observed one is

Ntest · PH0 [k(r, I) ≥ k(r, i)] (1)

where the number of tests Ntest is the total number of possible rectangles being considered, PH0 is the
probability on the a contrario model H0 (that is defined below), and I is a random image following
H0. The H0 stochastic model fixes the distribution of the number of aligned points k(r, I), which
only depends on the distribution of the level-line field associated with I. Thus H0 is a noise model
for the image gradient orientation rather than a noise model for the image.

Note that k(r, I) is an abuse of notation as I does not corresponds to an image but to a level-line
field following H0. Nevertheless, there is no contradiction as k(r, I) only depends on the gradient
orientations.

The a contrario model H0 used for line segment detection is therefore defined as a stochastic
model of the level-line field satisfying the following properties:

• {LLA(j)}j∈Pixels is composed of independent random variables

• LLA(j) is uniformly distributed over [0, 2π]
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- Define a « pure noise model », that is a law P on orientation fields Θ, given
here by : the Θ(x) are independent identically distributed uniformly on [0, 2π).

- Define the number of false alarms of the rectangle r in θ0, under the a
contrario model P by

NFAP(r; θ0) = Ntests × PP[k(r; Θ) ≥ k(r; θ0)],

where Ntests is the number of tests, that is the number of rectangles in a M × N
image (' (MN)5/2).

- In this definition, Θ is a random orientation field following the law P and
k(r; Θ) =

∑
x∈r 1I|Θ(x)−ϕ(r)|≤pπ is then a random variable following a binomial

distribution of parameters n(r) = #r and p.

- When NFAP(r; θ0) < ε, we say that the rectangle r is ε-meaningful.
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Main property of the NFA

Theoretical exercise 6 : prove the following proposition :

Proposition
When Θ is a random orientation field following the law P, then the
NFAP(ri; Θ), 1 ≤ i ≤ Ntests, become random variables and

EP

(
Ntest∑
i=1

1INFAP(ri;Θ)<ε

)
< ε.

In other words, the expected number (under law P) of ε-meaningful
rectangles is less than ε.
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Example 2

Original image u0 LSD result



Other Gaussian noise images

White noise image : the a contrario background noise model in the LSD
algorithm
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Visual perception
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And in a power-law Gaussian image ?



Application : medical imaging

Questions of detectability of lesions (masses) in mammogram images.

Refs : Burgess / Grosjean-Moisan



Last exercise

Practical exercise 7 :
Sample power-law Gaussian images, and check by yourself the perceptual
phenomenon of the previous slides. Try different values of β.



Conclusion of Part II

I A contrario approach : a computational approach to detect geometric
structures in images.

I Many other applications : shape recognition, image matching, clustering,
stereovision, denoising (grain filter), etc.

I Can we turn it into a generative approach ? -> Yes, see exponential
distributions.
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