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FIGURE: Three bars from an oboe playing ‘Winter711’ by Jan Beran : on the bottom,
the score as humans write it (Figure courtesy of Chris Raphael), on the top the
spectrogram. The spectrogram shows the distribution of power across frequencies as
time progresses. The oboe has a rich set of harmonics : below the white line is the
fundamental, in which the score is easily recognized, though stretched and squeezed a
bit.



Stochastic model for music

We are interested in constructing a stochastic model for the signal s(t) which
represents air pressure as a function of time while music is being played.

A typical piece of data might be given with a sampling interval ∆t = 1/8000
seconds, so that if 5 seconds of data are considered, we have a sequence
sk = s(k∆t), 1 ≤ k ≤ 40, 000 of real numbers and we want a stochastic model
for this finite-dimensional piece of data.

We need to put in the model extra hidden random variables which
represent the patterns. In this case, the main pattern consists in what is
usually called the “musical score”. We need :

1. the number of notes m,

2. the times ti = ki∆t where new notes begin, 1 < k1 < k2 < .... < km < N,

3. the frequency ωi of the ith note in hertz (or its approximate integer period
pi ≈ 1/(∆t · ωi) ∈ Z).



To construct this model, we will define a probability density p(~s,m,~t,~p) in all
the variables. We can sample from this model to see whether it sounds like
any music known to mankind (the simple model we will give will fail this test –
but variants can improve it greatly).

But more significantly, we can use this probability distribution to reconstruct
the score from an observed signal~sobs. We recover the hidden variables m,~t
and ~p by maximizing the conditional probability

p(m,~t,~p |~sobs) =
p(~sobs,m,~t,~p)∑

m′,~t′,~p′ p(~sobs,m′,~t′,~p′)
.

When you use this general method, you have 3 problems :
I the first one is the construction of the model,
I the second one is finding an algorithm to maximize p(m,~t,~p |~sobs) with

respect to the variables m,~t and ~p,
I the third one is optimizing the parameters of the model to make it fit the

data as well as possible.



Basics 1 : Gaussian distributions

Definition
Let ~x = (x1, ..., xn) denote a vector in Rn, we then define a Gaussian
distribution on Rn by its density

p(~x) =
1
Z

e−(~x−~m)tQ(~x−~m)/2,

where ~m ∈ Rn, Q is a n× n symmetric positive definite matrix, and Z is a
constant such that

∫
p(~x)d~x = 1.

Gaussian distributions are very important in Probability Theory, particularly
because of the following theorem.

Theorem
(Central Limit Theorem) If ~X in Rn is any random variable with mean 0 and
finite second moments, and if ~X (1), ..., ~X (N) are independent samples of ~X
then the distribution of 1√

N

∑N
k=1

~X (k), tends, as N → +∞, to a Gaussian

distribution with mean 0 and the same second moments as ~X .



Properties

Proposition
The Gaussian distribution p defined above has the following properties :
a) Z = (2π)

n
2 (det Q)−

1
2 .

b)
∫

(~x− ~m)p(~x)d~x = 0, which means that ~m is the mean of p denoted by Ep(~x).
c) If Cij =

∫
(xi − mi)(xj − mj)p(~x)d~x is the covariance matrix, then C = Q−1.

Corollary
A Gaussian distribution is uniquely determined by its mean and covariance.
And conversely, given any vector ~m and any positive definite symmetric
matrix C, there exists a Gaussian distribution with ~m and C as its mean and
covariance.

Notation : the Gaussian distribution with mean ~m and covariance C is
denoted N (~m,C). Also defined when C just positive (not definite), but then no
probability density.

Property : a random variable ~X = (X1, . . . ,Xn) is Gaussian if and only if any
linear combination of its coordinate is a 1D Gaussian.



Properties

Let p(~x) = 1
Z e−(~x−~m)tQ(~x−~m)/2 be a Gaussian distribution on Rn. It is very

helpful for our intuition to interpret and contrast in simple probability terms
what Cij = 0 and Qij = 0 mean :

• Fix i < j, then Cij = 0 means that “the marginal distribution on (xi, xj) makes
xi and xj independent”.
The marginal distribution on xi, xj is defined by

p(i,j)(xi, xj) =

∫
p(x1, ..., xn)dx1...d̂xi...d̂xj...dxn,

where the notation dx1...d̂xi...d̂xj...dxn means that we integrate on all variables
except xi and xj.
When Cij = 0, the covariance matrix for (xi, xj) by themselves is diagonal and
there exist constants Zij, αi and αj such that the marginal distribution on xi, xj

has the following expression

p(i,j)(xi, xj) =
1
Zij

e−αi(xi−mi)
2−αj(xj−mj)

2
= p(i)(xi) · p(j)(xj).



• Fix i < j, then Qij = 0 means that “the conditional distribution on (xi, xj)
fixing the other variables makes them independent”.
For k 6= i, j, fix xk = ak, then since Qij = 0 there exist constants b0, bi, bj, ci, cj

(depending on the ak ’s) such that the conditional distribution on xi, xj is

p(xi, xj|xk = ak for all k 6= i, j) = cnst.p(a1, .., xi, .., xj, .., an)

=
1
Z

e−(b0+bixi+bjxj+cixi
2+cjxj

2)

=
1
Z

e−ci(xi−m′ i)
2−cj(xj−m′ j)

2

= p(xi|xk = ak for all k 6= i, j) · p(xj|xk = ak for all k 6= i, j).

Useful property :
If X ∼ N (0, In) then for ~m ∈ Rn and A an n× n matrix, we have that
Y = AX + ~m is N (~m,AAt) distributed.



Entropy and differential entropy
When X is a random variable taking values in a finite set {a1, . . . , aN}, with
distribution P = (P1, . . . ,PN), that is Pk = P(X = ak). The entropy of X (or P) is
defined by

H(X) = H(P) = −
∑

k

Pk log2 Pk.

Properties : 0 ≤ H(X) ≤ log2 N, meaning that entropy is positive and maximal
for the uniform distribution.

The notion of entropy can be extended to continuous probability, in which
case it is called the “differential entropy”.

Definition
Let p(x) be a probability density on Rn, i.e. dP = p(x1, · · · , xn)dx1 · · · dxn is a
probability measure. The differential entropy of P is defined by

Hd(p) = −
∫
Rn

p(x) log2 p(x)dx = −EP (log2(p)) .

Rk : Unlike the case of entropy of a probability distribution on a finite space,
the differential entropy can be negative. For example, when
p(x) = Ua(x) = 1

a 1I[0,a](x), then Hd(p) = Hd(Ua) = log2 a, which is < 0 when
a < 1.



Proposition (2nd reason why Gaussian are important)
Let p(x) be a probability density on R with mean x and variance σ2, and let
g(x) be the Gaussian distribution with same mean x and same variance σ2 :

g(x) =
1

σ
√

2π
e−(x−x)2/2σ2

,

then
Hd(g) = log2

√
2πe + log2 σ ≥ Hd(p).

In particular, g has maximal differential entropy among all distributions with
given mean and variance.

This result can be easily extended to dimension n. Let g be the Gaussian
distribution with mean x ∈ Rn and covariance matrix C. Then the differential
entropy of g is

Hd(g) = n log2

√
2πe +

1
2

log2(det C),

and it is maximal among all distributions with given mean and covariance
matrix.

Rk on the link between entropies : let p be a continuous probability density on
R. Divide R into small bins Bi of size ∆x, and denote
Pi =

∫
Bi

p(x) dx ' p(xi)∆x, where xi ∈ Bi. Then Hd(p) ' H(P) + log2 ∆x.



Basics 2 : Fourier Analysis
a) If f is a function in L2(R) then one goes back and forth between f and its
Fourier transform f̂ via :

f̂ (ξ) =

∫
R

e−2πixξf (x)dx; f (x) =

∫
R

e2πixξ f̂ (ξ)dξ.

In this definition the variable x might represent a time (e.g. in seconds) and
then the variable ξ represents a frequency (e.g. in hertz).

b) If (fn) ∈ l2 is a sequence, then the Fourier transform of (fn) is the 1-periodic
function f̂ related to f by :

f̂ (ξ) =

+∞∑
n=−∞

e−2πinξfn; fn =

∫ 1

0
e2πinξ f̂ (ξ)dξ.

c) The finite Fourier Transform : if (f0, . . . , fN−1) is a finite sequence of length
N then its discrete Fourier Transform is

f̂m =
1√
N

N−1∑
n=0

e−2πi nm
N fn; fm =

1√
N

N−1∑
n=0

e+2πi nm
N f̂n.



Some properties :
In the following, we denote f−(x) = f (−x).

Isometry ‖ f ‖2 = ‖ f̂ ‖2, < f , g >=< f̂ , ĝ >
Product/Convolution f̂g = f̂ ∗ ĝ, f̂ ∗ g = f̂ .ĝ

Symmetry (̂f−) = f̂ , f̂ = f̂−

Translation ̂f (x− a) = e−2πiaξ f̂ , ê2πiaxf = f̂ (ξ − a)

Scaling f̂ (ax) = 1
a f̂
(
ξ
a

)
Derivatives f̂ ′ = 2πiξ f̂ x̂f (x) = i

2π f̂ ′

Gaussian ̂e−x2/2σ2 =
√

2πσe−2π2σ2ξ2

Cauchy ê−2π|x| = 1
π(1+ξ2)

1̂
1+x2 = πe−2π|ξ|

One of the main signal processing properties of the Fourier Transform is the
link between the autocorrelation and the power spectrum. Recall that the
autocorrelation is given by

f ∗ f−(x) =

∫
f (y)f (y− x)dy

and so :
̂(f ∗ f−) = |̂f |

2
.

where |̂f |
2

is the power spectrum.



Windowed Fourier Transform
Often a function has different oscillatory properties in different parts of its
domain, and, to describe this, we need to define another variant of the
Fourier transform, the Windowed Fourier Transform.
We consider a signal f defined for all x ∈ R. We choose a window function w.
Then the windowed Fourier Transform of f around point a and at frequency ξ
is defined as

f̂a(ξ) where fa(x) = w(x− a)f (x).

Using the property of product/convolution conversion of the Fourier
Transform, we get

f̂a = ̂w(x− a) ∗ f̂ .

To work out a simple case, assume that w is a Gaussian function,

w(x) =
1√
2πσ

e−x2/2σ2
= gσ(x).

With such a choice for w, the size of the window is of the order of σ. Then, the
Fourier Transform of w is

̂w(x− a)(ξ) = e−2π2σ2ξ2
.e−2πiξa.

And so the size of the “support” of ŵ is of the order of 1/σ. So finally
f̂a = ̂gσ(x− a) ∗ f̂ is a smoothing of f̂ with a kernel of width approximately 1/σ.



It is important to understand the behavior of such a windowed Fourier
Transform as σ goes to 0 and to infinity. As σ → 0, you get a better resolution
in time (the window is small), but you get less resolution in frequency
(frequencies are spread out over other frequencies). Conversely, as
σ → +∞, you get bad resolution in time, but very good resolution in
frequency. Is it possible to have together good resolution in time and in
frequency ? The answer to this question is no, and the reason for this is the
following theorem (the Uncertainty Principle).

Theorem
Suppose that f ∈ L2 is a real valued function such that

∫ +∞
−∞ f 2(x)dx = 1,

which means therefore that f 2dx is a probability density in x. If x =
∫

xf 2dx is
its mean, then the Standard Deviation of f 2dx is defined as usual by :

SD(f 2dx) =

√∫
(x− x)2f 2dx.

Moreover, we have
∫
|̂f (ξ)|2dξ = 1, which means that |̂f (ξ)|2dξ is also a

probability density, but in the frequency variable ξ. Then

SD(f 2dx) · SD(|̂f (ξ)|2dξ) ≥ 1
2π
.

−→ You cannot localize simultaneously in time and in frequency.



Aliasing phenomenon

To get a better feeling of how the different Fourier transforms interact, we look
at the example where a simple periodic function of a real variable is sampled
discretely and where the phenomenon of aliasing occurs.

For some ω > 0, let f (t) = e2iπωt be a purely periodic signal with frequency ω
and period p = 1/ω. Notice that f̂ (ξ) = δω(ξ) is the Dirac “function” at ω
(there is only one frequency). Let ∆t be a time interval and N a large integer
so that N∆t� p. For 0 ≤ k < N, let fs(k) = f (k∆t) be discrete samples of f .
Using the Discrete Fourier Transform, we get for l an integer :

|f̂s(l)|
2

=

∣∣∣∣∣ 1√
N

N−1∑
k=0

e2iπωk∆te−2iπ kl
N

∣∣∣∣∣
2

.

Summing this geometric series, we get the following expression :

|f̂s(l)|
2

=
C

sin2(π(ω∆t − l
N ))

,

where C is a constant independent of l. We now distinguish 2 cases
depending on whether the sampling is dense or sparse :



Dense sampling : ∆t� p or ω∆t� 1. Then if l0 is the nearest integer to
ωN∆t, we have 0 ≤ l0 < N and l0 is the frequency of the signal on the
discrete Fourier transform scale. The error between the true frequency ω and
the frequency estimated on the discrete scale is small :∣∣∣∣ω − l0

N∆t

∣∣∣∣ ≤ 1
2N∆t

.

Moreover, the peak of |f̂s(l)|
2

is found at l = l0.
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FIGURE: Example of dense sampling. On the left, we plot the real part of a purely periodic signal
(dotted line) t → exp(2iπωt) with ω = 2.83, p ≈ .35. It is sampled at points k∆t with ∆t = 0.1, and
0 ≤ k < N with N = 10 in this toy example. On the right, we plot the sampled version of the power
spectrum : since the sampling is dense (ω∆t < 1), there is no aliasing. The peak is found at l0 = 3
which is the closest integer to ωN∆t = 2.83.



Sparse sampling : ∆t > p or ω∆t > 1. Then instead of finding a peak of the
discrete power near ω, you get the existence of 2 integers l0 and n0 such that
0 ≤ l0 < N and ω∆t ≈ n0 + l0

N . And so the peak of f̂s is at l = l0, which means
that the peak of f̂ has been shifted far away from the true frequency ω. Notice
that in this case the signal of frequency ω has the same samples as the
signal of frequency ω − n0

∆t . That is what is called aliasing.
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FIGURE: Example of sparse sampling. On the left, everything is the same as in the previous figure
except that ∆t = 1. Since the sampling is now sparse, we see aliasing. The peak of the power is
found at l0 = 8 which is the closest integer to ωN∆t = 28.3 modulo N.



Gaussian models for stationary finite cyclic signals

In this part, we will combine the ideas of n-dimensional Gaussian distributions
and of Discrete Fourier Transforms.

Let~s = (s1, ..., sN) be a periodic signal (sN+1 = s1). We will first take the
Fourier Transform ŝ of~s. Usually we think of ŝ as a new vector in CN . But,
instead we can regard ŝ simply as the coefficients of~s when it is expanded in
a new orthonormal basis, a rotated version of the standard unit vectors.

The usual canonical basis of CN is ~e(1), ..., ~e(N) where ~e(k) = (0, ..., 1, .., 0) (the
1 is at the kth place). This basis is orthonormal. But instead we can choose
another orthonormal basis : ~f (0), ..., ~f (N−1) where ~f (k) is defined for
0 ≤ k ≤ N − 1 as

~f (k) =
1√
N

(1, e2iπ k
N , ..., e2iπ k(N−1)

N )

This basis is the Fourier basis. If~s is the signal, in the canonical basis we
have~s =

∑N
k=1 sk~e(k) and in the Fourier basis (using the inverse Fourier

Transform) we get

~s =

N−1∑
l=0

ŝl~f (l).

Notice that if the signal~s is real, then it has the property that ŝN−l = ŝl.



Now, let us assume that~s follows a Gaussian distribution with density :

pQ(~s) =
1
Z

e−(~s−~m)tQ(~s−~m)/2.

Here~s may be a vector of Cn, and in this case, we have to assume that the
matrix Q (which may have complex entries) is a Hermitian positive definite
matrix.

Definition
We say that the Gaussian distribution pQ is stationary if it satisfies for all
integer l :

pQ(Tl~s) = pQ(~s),

where (Tl~s)k = sk−l and k − l is taken modulo N.

Using the change to the Fourier basis, we get Q̂ and m̂ such that

pQ(~s) =
1
Z

e−(̂s−m̂)tQ̂(̂s−m̂)/2.

Theorem
pQ is stationary iff ~m is a constant signal and Q is a Hermitian banded matrix
(meaning Qi,i+j depends only on j mod N, and if it is denoted by aj then
aj = aN−j). Equivalently, in the Fourier basis, m̂ = (m̂0, 0, ..., 0) and Q̂ is a real
positive diagonal matrix.



White noise and colored noise

Such a stationary zero-mean distribution can be written :

p(~s) =
1
Z

e−
∑

l |ŝl|2/2σl
2
.

Then the real and imaginary parts <ŝl and =ŝl are independent Gaussian
random variables with mean 0 and standard deviation σl. Such a distribution
is called colored noise.

The particular case Q = IN , Q̂ = IN , and

p(~s) =
1
Z

e−
∑

l |ŝl|2/2,

is called white noise.

Notice that the differential entropy of colored noise is

N
2

log2(2πe) +

l=N−1∑
l=0

log2(σl).



white noise

1/f noise

Brownian motion = 1/f2 noise

FIGURE: Three simulations of colored noise with the variance of the power at frequency
f falling off as like 1/fα. Such noises are usually called 1/fα noises.



The case of a musical note

We return to the problem of finding a stochastic model for music. We first
construct a Gaussian model of a single note. Let ω be the fundamental
frequency of the note being played and p = 1/ω be its period. If the signal is
s(t) then

s(t + p) ' s(t),

which means that the signal is close to be periodic, although in real music,
there are always small residual variations.

See next figure for an example of such a signal taken from live music. Some
deviations from perfect periodicity are shown in the second graph. With some
averaging, we can make the signal periodic and then expand it in a Fourier
series with frequencies n/p. Its nth component is known as the nth harmonic.
In the Figure, all but three terms in the Fourier series are quite small.



FIGURE: On the top, a small sample of vocal music ; the second row shows the
variability of individual periods – due to sensor noise, background room noise,
variations in the singing ; the third and fourth rows show the decomposition of the
averaged recording into the first 3 harmonics (defined as the integer multiples of the
fundamental frequency) which contain almost all the power.



How do we make a Gaussian model for this signal ?

We formalize the property s(t + p) ' s(t) by assuming that the expected value
of
∫

(s(t + p)− s(t))2dt is quite small. We then constrain the expected total
power of the signal by bounding

∫
s(t)2dt.

Take a discrete sample of the signal s and, for simplicity, we assume that s
‘wraps around’ at some large integer N, i.e. sN+k = sk, and that p is an integer
dividing N. Let q = N/p, the number of cycles present in the whole sample.
We’ll analyze the simplest possible Gaussian model for s which gives
samples which are periodic plus some small residual noise. Its density is :

pa,b(s) =
1
Z

e−a
∑N−1

k=0 (s(k)−s(k+p))2/2−b
∑N−1

k=0 s(k)2/2 =
1
Z

e−~s
tQ~s/2

where a� b > 0, Qi,i = b + 2a,Qi,i+p = −a, for 0 ≤ i ≤ N− 1 and otherwise 0.

Notice that Q is a positive definite quadratic form (if there is no term
b
∑N−1

k=0 s(k)2/2 then the quadratic form is only semi-definite). Then pa,b(s) is a
stationary probability distribution, and so we can diagonalize the quadratic
form in the Fourier basis.



On the one hand, we have∑
k

(s(k)− s(k + p))2 = ‖ s− T−p(s) ‖2 = ‖ ŝ− T̂−p(s) ‖
2
.

Using the fact that ŝ(l)− T̂−p(s)(l) = ŝ(l)(1− e2iπ pl
N ), we get∑

k

(s(k)− s(k + p))2 =
∑

l

|̂s(l)|2|1− e2iπ pl
N |2 = 4

∑
l

|̂s(l)|2sin2(
πpl
N

).

On the other hand, we have∑
k

s(k)2 =
∑

l

|̂s(l)|2.

So
pa,b(s) =

1
Z

e−
∑

l(b+4asin2( πpl
N ))|̂s(l)|2/2 =

1
Z

Πle−(b+4asin2( πpl
N ))|̂s(l)|2/2. (1)

Then the expected power at frequency l is the mean of |̂s(l)|2, which works
out to be :

E(|̂s(l)|2) =
1

b + 4asin2(πpl
N )

.

Note that this has maxima 1/b if l is a multiple of N/p, that is all frequencies
which repeat in each cycle ; and that all other powers are much smaller
(because a� b).



1/b

1/(b+4a)

fundamental 2nd harmonic 3rd harmonic

FIGURE: Expected power spectrum : E(|̂s(l)|2) = 1/(b + 4asin2( πpl
N )).

Rk : This is not, however, an accurate model of real musical notes because
the power in all harmonics (integer multiples of the fundamental frequency) is
equally large. It is easy to change this and include extra parameters for the
expected power of the various harmonics using the second expression in
Equation (1).



The model for music
We construct the model for music in two stages. We recall that for this model,
we need : the sampled sound signal~s, and hidden random variables : the
number of notes m, the times~t where new notes begin, and the periods ~p of
the notes.
The probability distribution p(~s,m,~t,~p) can be decomposed in the following
way :

p(~s,m,~t,~p) =
m∏

l=1

p
(

(~s|Il)
∣∣∣ pl, tl, tl+1

)
· p(~p,~t,m), Il = {t | tl ≤ t < tl+1}.

We have already constructed a Gaussian model for
p(s|[tl,...,tl+1−1] | pl, tl, tl+1) :

p(s|[tl,...,tl+1−1] | pl, tl, tl+1) =
1
Z

exp

−a
tl+1−pl−1∑

n=tl

(sn+pl − sn)
2/2− b

tl+1−1∑
n=tl

st
2/2

 ,

where a� b. The simplest model is gotten by taking the random variable~t to
be Poisson and each pl to be independent of the other periods and uniformly
sampled from the set of periods of all the notes the musical instrument is
capable of producing (something like ‘atonal’ music). If per represents this set
of periods, then this gives the form :

p(~p,~t,m) = Ae−Cm1I{~p∈perm}.



The dogma of Pattern Theory is that we should sample from this model. It is
not at all hard to create samples using Matlab. The results are not very
convincing – they give a totally atonal, un-rhythmic ‘music’, but we can
certainly construct various models for music of increasing sophistication
which sound better. Possible elaborations and constraints include :

1. Tempered scale, which means that we impose
pl ≈ (sampling rate)/447 · 2−fk/12 where fk ∈ Z,

2. Tempo : tl+1 − tl ≈ alT0 where al ∈ Z.
3. Get a better model for harmonics : e.g. an expected power spectrum like

in Figure below. But for an instrument, we may also have a resonant
frequency enhancing all nearby harmonics of the note, shown in the
same figure.
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FIGURE: Better model for the power of harmonics : on the left, a simple decay of higher
frequencies ; on the right, resonances of the instrument enhance harmonics near specific
frequencies.

Rk : Some really sophisticated models have been studied. See, for instance,
the paper of Z. Ghahramani and M. Jordan Factorial Hidden Markov Models
using Bach Chorales for some examples.



Algorithm : Dynamic programming

The dynamic programming algorithm of Bellman is a very efficient algorithm
to compute the minimum of a function F of n variables x1, . . . , xn, provided this
function can be decomposed as the sum of functions fi(xi, xi+1).

Theorem
If F(x1, ..., xn) is a real-valued function of n variables xi ∈ Si, Si being a finite
set, of the form

F(x1, ..., xn) = f1(x1, x2) + f2(x2, x3) + ...+ fn−1(xn−1, xn)

then one can compute the global minimum of F in time O(s2n) and space
O(sn), where s = max

i
|Si|.

The algorithm goes like this :



1. First initialize h2 and Φ2 by :

∀x2 ∈ S2, h2(x2) = min
x1∈S1

f1(x1, x2)

∀x2 ∈ S2, Φ2(x2) = argmin
x1∈S1

f1(x1, x2)

2. We now loop over the variable k. At each stage, we will have computed :

∀xk ∈ Sk, hk(xk) = min
x1,..,xk−1

[f1(x1, x2) + ...+ fk−1(xk−1, xk)]

∀xk ∈ Sk, Φk(xk) = argmin
xk−1

( min
x1,..,xk−2

[f1(x1, x2) + ...+ fk−1(xk−1, xk)]).

Then we define :

∀xk+1 ∈ Sk+1, hk+1(xk+1) = min
x1,..,xk

[f1(x1, x2) + ...+ fk−1(xk−1, xk) + fk(xk, xk+1)]

= min
xk

(hk(xk) + fk(xk, xk+1))

∀xk+1 ∈ Sk+1, Φk+1(xk+1) = argmin
xk

(hk(xk) + fk(xk, xk+1)).

3. At the end, we let h = min
xn

(hn(xn)) and set :

xn = argmin
xn

(hn(xn)), xn−1 = Φn(xn), · · · , x1 = Φ2(x2).

Then h is the minimum of F and F(x1, ..., xn) = h.



If we look at the complexity of the algorithm, we see that at step k, for all xk+1

we have to search min
xk

(hk(xk) + fk(xk, xk+1)), and since there are n steps, the

complexity is in O(ns2). And moreover we have to store all the Φk(xk), which
means that the complexity in space is O(sn).

Example : Suppose that we want to find the minimum length path from A to
B knowing that we have the following graph :
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2

3 3
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2

1

 1

1 1
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If DX denotes the minimal distance from A to a point X , then we can compute
these in the order :

DE = min(d(A,C) + d(C,E), d(A,D) + d(D,E)) = 3

DF = min(d(A,C) + d(C,F), d(A,D) + d(D,F)) = 2

DG = min[DE + d(E,G),DF + d(F,G)] = 5

DH = min[DE + d(E,H),DF + d(F,H)] = 4

DB = min[DG + d(G,B),DH + d(H,B)] = 5

And finally, we find that the “best” path from A to B is A, D, E, H, B.



Finding the Best Possible Score via Dynamic Programming
Since music is a 1D signal, we can compute by dynamic programming the
best possible score, i.e. the mode of the posterior probability distribution in
the hidden variables m,~p,~t. The probability model for music is

p(~s,m,~t,~p) = Ae−Cm
m∏

k=1

1
Zk

e−a(
∑tk+1−pk−1

t=tk
(s(t+pk)−s(t))2/2)−b(

∑tk+1−1
t=tk

s(t)2/2).

Then if we fix~s =~so and define E(m,~t,~p) = − log p(~so,m,~t,~p), we see that it is
of the form

∑
k f (tk, tk+1, pk). We consider all possible scores on [1, t] including

a last note which ends at time t. The last note has a time of beginning
t′ + 1 < t and a period p. Then for such scores we have :

E = E1(~so|[0,t′], notes up to t′) + E2(~so|[t′+1,t], p) + E3(~so from t + 1 on).

Here E1 assumes the last note ends at t′, E2 assumes there is one note
extending from t′ + 1 to t (so it has no other Poisson variables in it) and E3

assumes a note begins at t + 1.
Using the algorithm of dynamic programming, we compute by induction on t
the “best score” for the time interval [0, t] assuming a note ends at t. Let
e(t′) = min E1(~so|[0,t′), notes up to t′) and assume by induction that we know
e(t′) for all t′ < t. We then find

e(t) = min
t′<t,p

[e(t′) + E2(~so|[t′,t), p)],

and that continues the induction. Only at the end, however, do we go back
and decide where the note boundaries are.



Other piecewise Gaussian Models
Many other types of 1D signals can be fit well by piecewise Gaussian signals.
Another source of nice examples are 1D slices of 2D images of the world.

Range image 1 of room

Image 2 of sky, house and road

Image 3 of sky, building, grass, pond and more grass

FIGURE: A range image of the interior of a house on top ; two usual images of the world on the
bottom left ; the 1D slices shown in white in the images are plotted on the bottom right.
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